Artículos de revistas sobre el tema "Inertial Bregman proximal gradient"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Inertial Bregman proximal gradient".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Mukkamala, Mahesh Chandra, Peter Ochs, Thomas Pock y Shoham Sabach. "Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Nonconvex Optimization". SIAM Journal on Mathematics of Data Science 2, n.º 3 (enero de 2020): 658–82. http://dx.doi.org/10.1137/19m1298007.
Texto completoKabbadj, S. "Inexact Version of Bregman Proximal Gradient Algorithm". Abstract and Applied Analysis 2020 (1 de abril de 2020): 1–11. http://dx.doi.org/10.1155/2020/1963980.
Texto completoZhou, Yi, Yingbin Liang y Lixin Shen. "A simple convergence analysis of Bregman proximal gradient algorithm". Computational Optimization and Applications 73, n.º 3 (4 de abril de 2019): 903–12. http://dx.doi.org/10.1007/s10589-019-00092-y.
Texto completoHanzely, Filip, Peter Richtárik y Lin Xiao. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization". Computational Optimization and Applications 79, n.º 2 (7 de abril de 2021): 405–40. http://dx.doi.org/10.1007/s10589-021-00273-8.
Texto completoMahadevan, Sridhar, Stephen Giguere y Nicholas Jacek. "Basis Adaptation for Sparse Nonlinear Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 27, n.º 1 (30 de junio de 2013): 654–60. http://dx.doi.org/10.1609/aaai.v27i1.8665.
Texto completoYang, Lei y Kim-Chuan Toh. "Bregman Proximal Point Algorithm Revisited: A New Inexact Version and Its Inertial Variant". SIAM Journal on Optimization 32, n.º 3 (13 de julio de 2022): 1523–54. http://dx.doi.org/10.1137/20m1360748.
Texto completoLi, Jing, Xiao Wei, Fengpin Wang y Jinjia Wang. "IPGM: Inertial Proximal Gradient Method for Convolutional Dictionary Learning". Electronics 10, n.º 23 (3 de diciembre de 2021): 3021. http://dx.doi.org/10.3390/electronics10233021.
Texto completoXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications 188, n.º 3 (8 de enero de 2021): 605–27. http://dx.doi.org/10.1007/s10957-020-01799-3.
Texto completoWang, Qingsong, Zehui Liu, Chunfeng Cui y Deren Han. "A Bregman Proximal Stochastic Gradient Method with Extrapolation for Nonconvex Nonsmooth Problems". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 14 (24 de marzo de 2024): 15580–88. http://dx.doi.org/10.1609/aaai.v38i14.29485.
Texto completoHe, Lulu, Jimin Ye y Jianwei E. "Nonconvex optimization with inertial proximal stochastic variance reduction gradient". Information Sciences 648 (noviembre de 2023): 119546. http://dx.doi.org/10.1016/j.ins.2023.119546.
Texto completoZhu, Daoli, Sien Deng, Minghua Li y Lei Zhao. "Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method". Journal of Optimization Theory and Applications 189, n.º 3 (31 de mayo de 2021): 889–918. http://dx.doi.org/10.1007/s10957-021-01865-4.
Texto completoHua, Xiaoqin y Nobuo Yamashita. "Block coordinate proximal gradient methods with variable Bregman functions for nonsmooth separable optimization". Mathematical Programming 160, n.º 1-2 (27 de enero de 2016): 1–32. http://dx.doi.org/10.1007/s10107-015-0969-z.
Texto completoZhang, Xiaoya, Roberto Barrio, M. Angeles Martinez, Hao Jiang y Lizhi Cheng. "Bregman Proximal Gradient Algorithm With Extrapolation for a Class of Nonconvex Nonsmooth Minimization Problems". IEEE Access 7 (2019): 126515–29. http://dx.doi.org/10.1109/access.2019.2937005.
Texto completoKesornprom, Suparat y Prasit Cholamjiak. "A modified inertial proximal gradient method for minimization problems and applications". AIMS Mathematics 7, n.º 5 (2022): 8147–61. http://dx.doi.org/10.3934/math.2022453.
Texto completoBoţ, Radu Ioan, Ernö Robert Csetnek y Nimit Nimana. "An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems". Vietnam Journal of Mathematics 46, n.º 1 (1 de septiembre de 2017): 53–71. http://dx.doi.org/10.1007/s10013-017-0256-9.
Texto completoKankam, Kunrada y Prasit Cholamjiak. "Double Inertial Proximal Gradient Algorithms for Convex Optimization Problems and Applications". Acta Mathematica Scientia 43, n.º 3 (29 de abril de 2023): 1462–76. http://dx.doi.org/10.1007/s10473-023-0326-x.
Texto completoAhookhosh, Masoud, Le Thi Khanh Hien, Nicolas Gillis y Panagiotis Patrinos. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization". Journal of Optimization Theory and Applications 190, n.º 1 (15 de junio de 2021): 234–58. http://dx.doi.org/10.1007/s10957-021-01880-5.
Texto completoBao, Chenglong, Chang Chen null y Kai Jiang. "An Adaptive Block Bregman Proximal Gradient Method for Computing Stationary States of Multicomponent Phase-Field Crystal Model". CSIAM Transactions on Applied Mathematics 3, n.º 1 (junio de 2022): 133–71. http://dx.doi.org/10.4208/csiam-am.so-2021-0002.
Texto completoWu, Zhongming y Min Li. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems". Computational Optimization and Applications 73, n.º 1 (18 de febrero de 2019): 129–58. http://dx.doi.org/10.1007/s10589-019-00073-1.
Texto completoKesornprom, Suparat, Papatsara Inkrong, Uamporn Witthayarat y Prasit Cholamjiak. "A recent proximal gradient algorithm for convex minimization problem using double inertial extrapolations". AIMS Mathematics 9, n.º 7 (2024): 18841–59. http://dx.doi.org/10.3934/math.2024917.
Texto completoKESORNPROM, Suparat y Prasit CHOLAMJİAK. "A double proximal gradient method with new linesearch for solving convex minimization problem with application to data classification". Results in Nonlinear Analysis 5, n.º 4 (30 de diciembre de 2022): 412–22. http://dx.doi.org/10.53006/rna.1143531.
Texto completoAdly, Samir y Hedy Attouch. "Finite Convergence of Proximal-Gradient Inertial Algorithms Combining Dry Friction with Hessian-Driven Damping". SIAM Journal on Optimization 30, n.º 3 (enero de 2020): 2134–62. http://dx.doi.org/10.1137/19m1307779.
Texto completoPakkaranang, Nuttapol, Poom Kumam, Vasile Berinde y Yusuf I. Suleiman. "Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery". Journal of Supercomputing 76, n.º 12 (27 de febrero de 2020): 9456–77. http://dx.doi.org/10.1007/s11227-020-03215-z.
Texto completoJolaoso, L. O., H. A. Abass y O. T. Mewomo. "A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space". Archivum Mathematicum, n.º 3 (2019): 167–94. http://dx.doi.org/10.5817/am2019-3-167.
Texto completoBussaban, Limpapat, Attapol Kaewkhao y Suthep Suantai. "Inertial s-iteration forward-backward algorithm for a family of nonexpansive operators with applications to image restoration problems". Filomat 35, n.º 3 (2021): 771–82. http://dx.doi.org/10.2298/fil2103771b.
Texto completoWang, Xiaofan, Zhiyuan Deng, Changle Wang y Jinjia Wang. "Inertial Algorithm with Dry Fraction and Convolutional Sparse Coding for 3D Localization with Light Field Microscopy". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 18 (24 de marzo de 2024): 20830–37. http://dx.doi.org/10.1609/aaai.v38i18.30072.
Texto completoLoría-Calderón, Tyrone M., Carlos D. Gómez-Carmona, Keven G. Santamaría-Guzmán, Mynor Rodríguez-Hernández y José Pino-Ortega. "Quantifying the External Joint Workload and Safety of Latin Dance in Older Adults: Potential Benefits for Musculoskeletal Health". Applied Sciences 14, n.º 7 (22 de marzo de 2024): 2689. http://dx.doi.org/10.3390/app14072689.
Texto completoWu, Zhongming, Chongshou Li, Min Li y Andrew Lim. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems". Journal of Global Optimization, 19 de agosto de 2020. http://dx.doi.org/10.1007/s10898-020-00943-7.
Texto completoGao, Xue, Xingju Cai, Xiangfeng Wang y Deren Han. "An alternating structure-adapted Bregman proximal gradient descent algorithm for constrained nonconvex nonsmooth optimization problems and its inertial variant". Journal of Global Optimization, 24 de junio de 2023. http://dx.doi.org/10.1007/s10898-023-01300-0.
Texto completoZhang, Hui, Yu-Hong Dai, Lei Guo y Wei Peng. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions". Mathematics of Operations Research, 25 de junio de 2019. http://dx.doi.org/10.1287/moor.2019.1047.
Texto completoTakahashi, Shota, Mituhiro Fukuda y Mirai Tanaka. "New Bregman proximal type algorithms for solving DC optimization problems". Computational Optimization and Applications, 23 de septiembre de 2022. http://dx.doi.org/10.1007/s10589-022-00411-w.
Texto completoLiu, Jin-Zan y Xin-Wei Liu. "A dual Bregman proximal gradient method for relatively-strongly convex optimization". Numerical Algebra, Control & Optimization, 2021, 0. http://dx.doi.org/10.3934/naco.2021028.
Texto completoSun, Tao, Linbo Qiao y Dongsheng Li. "Nonergodic Complexity of Proximal Inertial Gradient Descents". IEEE Transactions on Neural Networks and Learning Systems, 2020, 1–14. http://dx.doi.org/10.1109/tnnls.2020.3025157.
Texto completoChen, Kangming, Ellen H. Fukuda y Nobuo Yamashita. "A proximal gradient method with Bregman distance in multi-objective optimization". Pacific Journal of Optimization, 2024. http://dx.doi.org/10.61208/pjo-2024-012.
Texto completoMukkamala, Mahesh Chandra, Jalal Fadili y Peter Ochs. "Global convergence of model function based Bregman proximal minimization algorithms". Journal of Global Optimization, 1 de diciembre de 2021. http://dx.doi.org/10.1007/s10898-021-01114-y.
Texto completoXiao, Xiantao. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods". Journal of Optimization Theory and Applications, 8 de enero de 2021. http://dx.doi.org/10.1007/s10957-020-01799-3.
Texto completoBonettini, S., M. Prato y S. Rebegoldi. "A new proximal heavy ball inexact line-search algorithm". Computational Optimization and Applications, 10 de marzo de 2024. http://dx.doi.org/10.1007/s10589-024-00565-9.
Texto completoDuan, Peichao, Yiqun Zhang y Qinxiong Bu. "New inertial proximal gradient methods for unconstrained convex optimization problems". Journal of Inequalities and Applications 2020, n.º 1 (diciembre de 2020). http://dx.doi.org/10.1186/s13660-020-02522-6.
Texto completoHertrich, Johannes y Gabriele Steidl. "Inertial stochastic PALM and applications in machine learning". Sampling Theory, Signal Processing, and Data Analysis 20, n.º 1 (22 de abril de 2022). http://dx.doi.org/10.1007/s43670-022-00021-x.
Texto completoZhang, Xiaoya, Wei Peng y Hui Zhang. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees". Mathematical Methods of Operations Research, 25 de junio de 2022. http://dx.doi.org/10.1007/s00186-022-00790-0.
Texto completoGuo, Chenzheng, Jing Zhao y Qiao-Li Dong. "A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems". Numerical Algorithms, 9 de noviembre de 2023. http://dx.doi.org/10.1007/s11075-023-01693-9.
Texto completoJia, Zehui, Jieru Huang y Xingju Cai. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems". Journal of Global Optimization, 29 de mayo de 2021. http://dx.doi.org/10.1007/s10898-021-01044-9.
Texto completoKankam, Kunrada, Watcharaporn Cholamjiak y Prasit Cholamjiak. "New inertial forward–backward algorithm for convex minimization with applications". Demonstratio Mathematica 56, n.º 1 (1 de enero de 2023). http://dx.doi.org/10.1515/dema-2022-0188.
Texto completoSun, Shuya y Lulu He. "General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization". Journal of Inequalities and Applications 2023, n.º 1 (17 de febrero de 2023). http://dx.doi.org/10.1186/s13660-023-02922-4.
Texto completoInkrong, Papatsara y Prasit Cholamjiak. "Modified proximal gradient methods involving double inertial extrapolations for monotone inclusion". Mathematical Methods in the Applied Sciences, 30 de abril de 2024. http://dx.doi.org/10.1002/mma.10159.
Texto completoValkonen, Tuomo. "Proximal methods for point source localisation". Journal of Nonsmooth Analysis and Optimization Volume 4, Original research articles (21 de septiembre de 2023). http://dx.doi.org/10.46298/jnsao-2023-10433.
Texto completoMouktonglang, Thanasak, Wipawinee Chaiwino y Raweerote Suparatulatorn. "A proximal gradient method with double inertial steps for minimization problems involving demicontractive mappings". Journal of Inequalities and Applications 2024, n.º 1 (15 de mayo de 2024). http://dx.doi.org/10.1186/s13660-024-03145-x.
Texto completo"Convergence of proximal gradient method with alternated inertial step for minimization problem". Advances in Fixed Point Theory, 2024. http://dx.doi.org/10.28919/afpt/8625.
Texto completoSilveti-Falls, Antonio, Cesare Molinari y Jalal Fadili. "Inexact and Stochastic Generalized Conditional Gradient with Augmented Lagrangian and Proximal Step". Journal of Nonsmooth Analysis and Optimization Volume 2, Original research articles (1 de septiembre de 2021). http://dx.doi.org/10.46298/jnsao-2021-6480.
Texto completoCohen, Eyal y Marc Teboulle. "Alternating and Parallel Proximal Gradient Methods for Nonsmooth, Nonconvex Minimax: A Unified Convergence Analysis". Mathematics of Operations Research, 8 de febrero de 2024. http://dx.doi.org/10.1287/moor.2022.0294.
Texto completo