Literatura académica sobre el tema "Indium selenid"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Indium selenid".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Indium selenid"
Ivanauskas, Algimantas, Remigijus Ivanauskas y Ingrida Ancutiene. "Effect of In-Incorporation and Annealing on CuxSe Thin Films". Materials 14, n.º 14 (8 de julio de 2021): 3810. http://dx.doi.org/10.3390/ma14143810.
Texto completoSong, Nahong, Hong Ling, Yusheng Wang, Liying Zhang, Yuye Yang y Yu Jia. "Intriguing electronic properties of germanene/ indium selenide and antimonene/ indium selenide heterostructures". Journal of Solid State Chemistry 269 (enero de 2019): 513–20. http://dx.doi.org/10.1016/j.jssc.2018.10.031.
Texto completoKabanov V. F., Mikhailov A. I. y Gavrikov M. V. "Investigation of the features of electronic spectrum of quantum dots in narrow-gap semiconductors". Technical Physics Letters 48, n.º 8 (2022): 47. http://dx.doi.org/10.21883/tpl.2022.08.55061.19220.
Texto completoKaterynchuk, V. M. "Photoemission spectra of indium selenide". Semiconductor physics, quantum electronics and optoelectronics 9, n.º 4 (15 de diciembre de 2006): 36–39. http://dx.doi.org/10.15407/spqeo9.04.036.
Texto completoMassaccesi, Sylvie, Sylvie Sanchez y Jacques Vedel. "Electrodeposition of indium selenide in2se3". Journal of Electroanalytical Chemistry 412, n.º 1-2 (agosto de 1996): 95–101. http://dx.doi.org/10.1016/0022-0728(96)04604-9.
Texto completoKatee, Narjes Sadeq, Oday Ibraheem Abdullah y Emad Talib Hashim. "Extracting Four Solar Model Electrical Parameters of Mono-Crystalline Silicon (mc-Si) and Thin Film (CIGS) Solar Modules using Different Methods". Journal of Engineering 27, n.º 4 (29 de marzo de 2021): 16–32. http://dx.doi.org/10.31026/j.eng.2021.04.02.
Texto completoRamanujam, Jeyakumar y Udai P. Singh. "Copper indium gallium selenide based solar cells – a review". Energy & Environmental Science 10, n.º 6 (2017): 1306–19. http://dx.doi.org/10.1039/c7ee00826k.
Texto completoNiu, Xianghong, Yunhai Li, Yehui Zhang, Qijing Zheng, Jin Zhao y Jinlan Wang. "Highly efficient photogenerated electron transfer at a black phosphorus/indium selenide heterostructure interface from ultrafast dynamics". Journal of Materials Chemistry C 7, n.º 7 (2019): 1864–70. http://dx.doi.org/10.1039/c8tc06208k.
Texto completoSun, Maojun, Wei Wang, Qinghua Zhao, Xuetao Gan, Yuanhui Sun, Wanqi Jie y Tao Wang. "ε-InSe single crystals grown by a horizontal gradient freeze method". CrystEngComm 22, n.º 45 (2020): 7864–69. http://dx.doi.org/10.1039/d0ce01271h.
Texto completoRahman, Md Ferdous, Mithun Chowdhury, Latha Marasamy, Mustafa K. A. Mohammed, Md Dulal Haque, Sheikh Rashel Al Ahmed, Ahmad Irfan, Aijaz Rasool Chaudhry y Souraya Goumri-Said. "Improving the efficiency of a CIGS solar cell to above 31% with Sb2S3 as a new BSF: a numerical simulation approach by SCAPS-1D". RSC Advances 14, n.º 3 (2024): 1924–38. http://dx.doi.org/10.1039/d3ra07893k.
Texto completoTesis sobre el tema "Indium selenid"
Wu, Wenyi. "Space Charge Doped p-n Junction : 2D Diode with Few-layer Indium Selenide". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS449.
Texto completoThis work combines the singular properties of 2D materials with an innovative technique used for changing the electronic properties of ultra-thin films to propose a new technology for making the simplest bipolar electronic device, the diode. Firstly we identify semiconducting materials which can be fabricated in ultra-thin layers. Secondly, we use a proprietary technique called Space Charge Doping developed in our group for doping the material, either n or p. Finally, we obtain diode characteristics from the device. The manuscript begins with a review of different materials and properties. In the family of 2D materials, our choice was a III-VI layered semiconductor with a direct bandgap: InSe. We also chose a completely different kind of material, polycrystalline CdO, which is neither layered nor has a direct bandgap but is easy to fabricate in the ultra-thin film form and has high carrier mobility. After preliminary experiments, we chose InSe and fabricated devices of ultra-thin, few atomic layer InSe thin films. We chose to develop in parallel two different geometries for the p-n junction diode. We were able to obtain rectifying behavior for each geometry implying that our space charge doping approach was successful in producing microscopically, spatially differentiated doping in each device. We discuss the obtained I-V characteristics and the inherent limitations of the devices (local heating, hysteresis) and suggest improvements for future experiments and ways of obtaining more efficient and stable functioning and geometry as part of the perspectives of this thesis
Kamada, Rui. "Copper(indium,gallium)selenide film formation from selenization of mixed metal/metal-selenide precursors". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 226 p, 2009. http://proquest.umi.com/pqdweb?did=1654501631&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Texto completoHeath, Jennifer Theresa. "Electronic transitions in the bandgap of copper indium gallium diselenide polycrystalline thin films /". view abstract or download file of text, 2002. http://wwwlib.umi.com/cr/uoregon/fullcit?p3072587.
Texto completoTypescript. Includes vita and abstract. Includes bibliographical references (leaves 143-148). Also available for download via the World Wide Web; free to University of Oregon users.
Jehl, Zacharie. "Realization of ultrathin Copper Indium Gallium Di-selenide (CIGSe) solar cells". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112058/document.
Texto completoIn this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collection for thin and ultrathin CIGSe solar cells. Solutions to overcome these problems are proposed and the potential improvements are modeled; we show that front side (buffer layer, antireflection coating) and back side (reflective back contact, light scattering) engineering of an ultrathin device can potentially increase the conversion efficiency up to the level of a standard thick CIGSe solar cell.By using chemical bromine etching on a standard thick CIGSe layer, we realize solar cells with different absorber thicknesses and experimentally study the influence of the absorber thickness on the photovoltaic parameters of the devices. Experiments show a similar trends to that observed in numerical modeling.Front contact engineering on thin CIGSe solar cell is realized to increase the specific absorption in CIGSe, including alternative ZnS buffer, front ZnO:Al window texturation and anti-reflection coating. Substantial improvements are observed whatever the CIGSe thickness, with efficiencies higher that the default configuration.A back contact engineering at low temperature is realized by using an innovative approach combining chemical etching of the CIGSe and mechanical lift-off of the CIGSe from the original Molybdenum (Mo) substrate. New highly reflective materials previously incompatible with the standard solar cell process are used as back contact for thin and ultrathin CIGSe solar cells, and a comparative study between standard Mo back contact and alternative reflective Au back contact solar cells is performed. The Au back reflector significantly enhance the efficiency of solar cell with sub-micrometer absorbers compared to the standard Mo back reflector; an efficiency higher than 10 % on a 400 nm CIGSe is obtained with Au back contact (7.9% with standard Mo back contact). For further reduction of the absorber thickness down to 100-200 nm, numerical modeling show that a lambertian back reflector is needed to fully absorb the incident light in the CIGSe. An experimental proof of concept device with a CIGSe thickness of 200 nm and a lambertian back reflector is realized and characterized by reflection/transmission spectroscopy, and the experimental spectral response is determined by combining simulation and experimentally measured absorption. A short circuit current of 26 mA.cm-2 is determined with the lambertian back reflector, which is much higher than what is obtained for the same device with no reflector (15 mA.cm-2), and comparable to the short circuit current measured on a reference 2500 nm thick CIGSe solar cell (28 mA.cm-2). Lambertian back reflectors are therefore found to be the most effective way to enhance the efficiency of an ultrathin CIGSe solar cell up to the level of a reference thick CIGSe solar cell
Thompson, John O. "The importance of elemental stacking order and layer thickness in controlling the formation kinetics of copper indium diselenide /". Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2007. http://hdl.handle.net/1794/6197.
Texto completoTypescript. Includes vita and abstract. Includes bibliographical references (leaves 81-84). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Wasala, Milinda. "ELECTRONIC AND OPTO-ELECTRONIC TRANSPORT PROPERTIES OF FEW LAYER INDIUM SELENIDE FETS". OpenSIUC, 2019. https://opensiuc.lib.siu.edu/dissertations/1704.
Texto completoMyers, Hadley Franklin. "Studies on the effect of sodium in Bridgman-grown CuInSe₂". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116020.
Texto completoFralaide, Michael Orcino. "Electrical Transport and Photoconduction of Ambipolar Tungsten Diselenide and n-type Indium Selenide". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1824.
Texto completoStephens, Scott H. "Modeling optical properties of thin film copper(indium,gallium)selenide solar cells using spectroscopic ellipsometry". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 0.69 Mb., 88 p, 2006. http://wwwlib.umi.com/dissertations/fullcit/1432297.
Texto completoDjebbar, El-hocine. "A DLTS study of copper indium diselenide". Thesis, University of Salford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391312.
Texto completoLibros sobre el tema "Indium selenid"
J, Coutts T., Kazmerski Lawrence L y Wagner S, eds. Copper indium diselenide for photovoltaic applications. Amsterdam: Elsevier, 1986.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Thin film, concentrator and multijunction space solar cells: Status and potential. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Buscar texto completoMagorrian, Samuel J. Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6.
Texto completoMaria, Faur y United States. National Aeronautics and Space Administration., eds. Theoretical and experimental research in space photovoltaics: Final report research grant no. NAG3-658 for the period January 1986 - March 1995. Cleveland, Ohio: Cleveland State University, Electrical Engineering Dept., Space Photovoltaic Research Center, 1995.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Theoretical and experimental research in space photovoltaics: Electrodeposition of CuInxGa₁-xSe₂ (CIGS) thin layers for CdS/CIGS solar cell applications : final report, NASA research grant no. NAG3-1692 for the period January 23, 1995 to April 22, 1995. [Cleveland, Ohio?]: The Center, 1997.
Buscar texto completoMaria, Faur y United States. National Aeronautics and Space Administration., eds. Theoretical and experimental research in space photovoltaics: Final report research grant no. NAG3-658 for the period January 1986 - March 1995. Cleveland, Ohio: Cleveland State University, Electrical Engineering Dept., Space Photovoltaic Research Center, 1995.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Theoretical and experimental research in space photovoltaics: Electrodeposition of CuInxGa₁-xSe₂ (CIGS) thin layers for CdS/CIGS solar cell applications : final report, NASA research grant no. NAG3-1692 for the period January 23, 1995 to April 22, 1995. [Cleveland, Ohio?]: The Center, 1997.
Buscar texto completoClark, Melanie L. Occurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. Cheyenne, Wyo: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Buscar texto completoClark, Melanie L. Occurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. Cheyenne, Wyo: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Buscar texto completoClark, Melanie L. Occurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. Cheyenne, Wyo: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Indium selenid"
Farmer, Thomas. "Indium Selenide". En Structural Studies of Liquids and Glasses Using Aerodynamic Levitation, 99–110. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06575-5_7.
Texto completoPredel, B. "In - Se (Indium - Selenium)". En Dy - Er … Ir - Y, 233–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-24778-1_149.
Texto completoJulien, C. y M. Jouanne. "Optical studies of lithium intercalated indium selenide". En Chemical Physics of Intercalation, 433–36. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9649-0_34.
Texto completoHerrero Rueda, J. y J. Ortega. "Electrochemically Grown Indium Selenide Thin Films For Pec’s Solar Cells". En Seventh E.C. Photovoltaic Solar Energy Conference, 1217–19. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_220.
Texto completoRhyee, Jong-Soo. "The Peierls Distortion and Quasi-One-Dimensional Crystalline Materials of Indium Selenides". En Thermoelectric Nanomaterials, 95–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37537-8_5.
Texto completoBhalerao, A. B., S. B. Jambure, R. N. Bulakhe, S. S. Kahandal, S. D. Jagtap, A. G. Banpurkar, A. W. M. H. Ansari, Insik In y C. D. Lokhande. "Substrate-Assisted Electrosynthesis of Patterned Lamellar Type Indium Selenide (InSe) Layer for Photovoltaic Application". En Proceedings of the 7th International Conference on Advances in Energy Research, 837–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_79.
Texto completoBhalerao, A. B., S. B. Jambure, R. N. Bulakhe, S. S. Kahandal, S. D. Jagtap, A. W. M. H. Ansari, Insik In y C. D. Lokhande. "Correction to: Substrate-Assisted Electrosynthesis of Patterned Lamellar Type Indium Selenide (InSe) Layer for Photovoltaic Application". En Proceedings of the 7th International Conference on Advances in Energy Research, C1. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-5955-6_161.
Texto completoMagorrian, Samuel J. "Introduction". En Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide, 1–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6_1.
Texto completoMagorrian, Samuel J. "Tight-Binding Model". En Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide, 13–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6_2.
Texto completoMagorrian, Samuel J. "Hybrid $$\mathbf {k\cdot p}$$ Tight-Binding Theory". En Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide, 35–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25715-6_3.
Texto completoActas de conferencias sobre el tema "Indium selenid"
Vittoe, Robert L., Tung Ho, Sudhir Shrestha, Mangilal Agarwal y Kody Varahramyan. "All Solution-Based Fabrication of CIGS Solar Cell". En ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1239.
Texto completoLee, Heon y Dae-hwan Kang. "Indium selenide based phase change memory". En 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.p10-4.
Texto completoDong, Chaobo, Chandraman Patil, Hao Wang, Sergiy Krylyuk, Albert Davydov, Hamed Dalir y Volker J. Sorger. "Ultralow Energy van der Waals InSe PN junction heterostructure photodetector for NIR applications". En CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth3b.31.
Texto completoOh, Thomas I. y Paul Hanke. "IR transparent conductive coatings by rf and dc magnetrons". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.wp4.
Texto completoMalik, S. N., H. Ahmed, M. Shahid, N. Haider, M. A. Malik y P. O'Brien. "Colloidal preparation of copper selenide and indium selenide nanoparticles by single source precursors approach". En 2013 10th International Bhurban Conference on Applied Sciences and Technology (IBCAST 2013). IEEE, 2013. http://dx.doi.org/10.1109/ibcast.2013.6512127.
Texto completoMenezes, Shalini y Yan Li. "Large area deposition of widegap copper indium selenide absorbers". En 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6745010.
Texto completoLi, Shina y RuiXin Ma. "Studies of copper indium Di-selenide powder fabrication technologies". En 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2011. http://dx.doi.org/10.1109/iceceng.2011.6058222.
Texto completoUrmila, K. S., T. Namitha Asokan, B. Pradeep, Rajani Jacob y Rachel Reena Philip. "Photoconductivity in reactively evaporated copper indium selenide thin films". En OPTOELECTRONIC MATERIALS AND THIN FILMS: OMTAT 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861984.
Texto completoRashid Ullah, Muhammad, Aimal Daud Khan y Javed Iqbal. "Optimization of Efficient Copper-Indium-Gallium Di-Selenide Solar Cell". En 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). IEEE, 2019. http://dx.doi.org/10.1109/icecce47252.2019.8940744.
Texto completoHibberd, C. J., M. Ganchev, M. Kaelin, K. Ernits y A. N. Tiwari. "Incorporation of copper into indium gallium selenide layers from solution". En 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922885.
Texto completoInformes sobre el tema "Indium selenid"
Rasmussen, Anya Marie. Pressure-induced phase transitions of indium selenide. Office of Scientific and Technical Information (OSTI), mayo de 2016. http://dx.doi.org/10.2172/1469335.
Texto completoKatzman, Daniel B. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2015. http://dx.doi.org/10.21236/ad1009063.
Texto completoOccurrence of selenium and mercury in surface water, Wind River Indian Reservation, Wyoming, 1995. US Geological Survey, 1996. http://dx.doi.org/10.3133/wri964159.
Texto completo