Literatura académica sobre el tema "Inbreeding load"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Inbreeding load".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Inbreeding load"
Nagy, István y Thi Anh Nguyen. "Characterizing and Eliminating the Inbreeding Load". Veterinary Sciences 11, n.º 1 (22 de diciembre de 2023): 8. http://dx.doi.org/10.3390/vetsci11010008.
Texto completoCHARLESWORTH, BRIAN. "The effect of synergistic epistasis on the inbreeding load". Genetical Research 71, n.º 1 (febrero de 1998): 85–89. http://dx.doi.org/10.1017/s0016672398003140.
Texto completoBATAILLON, THOMAS y MARK KIRKPATRICK. "Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter". Genetical Research 75, n.º 1 (febrero de 2000): 75–81. http://dx.doi.org/10.1017/s0016672399004048.
Texto completoWang, Dongfeng, Hosein Salehian-Dehkordi, Langda Suo y Fenghua Lv. "Impacts of Population Size and Domestication Process on Genetic Diversity and Genetic Load in Genus Ovis". Genes 14, n.º 10 (23 de octubre de 2023): 1977. http://dx.doi.org/10.3390/genes14101977.
Texto completoLatter, B. D., J. C. Mulley, D. Reid y L. Pascoe. "Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster." Genetics 139, n.º 1 (1 de enero de 1995): 287–97. http://dx.doi.org/10.1093/genetics/139.1.287.
Texto completoGuillaume, Frédéric y Nicolas Perrin. "Joint Evolution of Dispersal and Inbreeding Load". Genetics 173, n.º 1 (1 de marzo de 2006): 497–509. http://dx.doi.org/10.1534/genetics.105.046847.
Texto completoNietlisbach, Pirmin, Stefanie Muff, Jane M. Reid, Michael C. Whitlock y Lukas F. Keller. "Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load". Evolutionary Applications 12, n.º 2 (23 de octubre de 2018): 266–79. http://dx.doi.org/10.1111/eva.12713.
Texto completoFox, C. W., K. L. Scheibly, B. P. Smith y W. G. Wallin. "Inbreeding depression in two seed-feeding beetles, Callosobruchus maculatus and Stator limbatus (Coleoptera: Chrysomelidae)". Bulletin of Entomological Research 97, n.º 1 (febrero de 2007): 49–54. http://dx.doi.org/10.1017/s0007485307004737.
Texto completoWillis, John H. "Inbreeding Load, Average Dominance and the Mutation Rate for Mildly Deleterious Alleles in Mimulus guttatus". Genetics 153, n.º 4 (1 de diciembre de 1999): 1885–98. http://dx.doi.org/10.1093/genetics/153.4.1885.
Texto completoZHOU, SHU-RONG y JOHN R. PANNELL. "Inbreeding depression and genetic load at partially linked loci in a metapopulation". Genetics Research 92, n.º 2 (abril de 2010): 127–40. http://dx.doi.org/10.1017/s0016672310000133.
Texto completoTesis sobre el tema "Inbreeding load"
Antonios, Simona. "Méthodes basées sur la généalogie pour partitionner le gain génétique et le fardeau génétique chez les ovins laitiers". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP099.
Texto completoThis thesis explores pedigree-based methods to partition genetic gain and inbreeding load in French dairy sheep breeds: Lacaune (LAC), Basco-Béarnaise (BB), Manech Tête Noire (MTN) and Manech Tête Rousse (MTR).The Chapter 2 used a retrospective analysis to fine partitioning genetic trend in Mendelian samplings by categories of animals defined by sex and by selection pathways, and to similarly characterize long-term genetic contributions. We analysed genetic gain for milk yield in four dairy sheep breeds: LAC, BB, MTN and MTR. Dams of males and Artificial Insemination (AI) males were the most important sources of genetic progress as observed in the decomposition in Mendelian sampling trends. The yearly contributions were more erratic for AI males than for dams of males as they are averaged across a smaller number of individuals. Overall, in terms of Mendelian sampling, females contributed more than males to the total genetic gain, and we interpret that this is because females constitute a larger pool of genetic diversity. In addition, we computed long-term contributions from each individual to the following pseudo-generations. Mendelian sampling was more important than Parent Average to determine the selection of individuals and their long-term contributions. Long-term contributions were larger for AI males (with larger progeny sizes than females) and in BB than in LAC (with the latter being a larger population).In Chapter 3, we presented theory that show the additive nature of the inbreeding load. The inbreeding load effect and the regular (in non-inbred population) additive genetic effect have a negative correlation depending on allele frequencies, inbreeding and dominance. We calculated and described the partial inbreeding coefficients in three French dairy sheep populations: BB, MTN and MTR. Then, we included these coefficients in a mixed model as random regression covariates, to predict genetic variance and breeding values of the inbreeding load for milk yield in the same breeds. There is genetic variance for inbreeding load in MTN and MTR breeds, but it was not different from zero for BB. As expected, we estimated negative genetic correlations between inbreeding load and breeding values; however, estimates were close to zero in the three sheep breeds. The small magnitude of inbreeding load does not warrant selection based on this criterion.In Chapter 4, we evaluated the effectiveness of involving inbreeding load in selection strategies in a dairy sheep breeding scheme. We did this by simulation of 10 generations of evaluations and selection. Six scenarios that differ in the criteria of selection (only breeding values, only breeding values of inbreeding load, or both genetic and inbreeding load breeding values) and mate allocation strategies (minimising inbreeding load or minimising expected future inbreeding) were evaluated. Scenarios were compared in terms of genetic gain, inbreeding coefficients, rate of inbreeding, effective population size, and accuracy of selection. The use of predictions of inbreeding load effects to select animals directly or in mating strategies is feasible. However, selection based on inbreeding load (due to its variation and magnitude) is not of practical interest. In light of our results, the inclusion of genotype animals could improve the accuracy of predicting individual inbreeding loads. Further research is needed
Capítulos de libros sobre el tema "Inbreeding load"
Garg, Meenu, Pragyanshree Nayak, Alok Kumar Singh y Ashwini Kumar Ray. "Inbreeding and Genetic Load and Role of Ecogenomics in Landscape Genetic Restoration". En Plant Ecogenomics, 215–29. New York: Apple Academic Press, 2022. http://dx.doi.org/10.1201/9781003282006-11.
Texto completoRowe, Graham, Michael Sweet y Trevor J. C. Beebee. "Conservation genetics". En An Introduction to Molecular Ecology. Oxford University Press, 2017. http://dx.doi.org/10.1093/hesc/9780198716990.003.0010.
Texto completoGoodenough, Anne E. y Adam G. Hart. "Ex Situ Conservation". En Applied Ecology. Oxford University Press, 2017. http://dx.doi.org/10.1093/hesc/9780198723288.003.0016.
Texto completoActas de conferencias sobre el tema "Inbreeding load"
Varona, L., D. López-Carbonell, H. Srihi, M. Ramírez, P. Martínez, M. Hermida, J. Altarriba y J. Casellas. "183. Genetic variability in the individual inbreeding load: genomic prediction for artificial purging". En World Congress on Genetics Applied to Livestock Production. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-940-4_183.
Texto completo