Índice
Literatura académica sobre el tema "Impression 3D – Biotechnologie"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Impression 3D – Biotechnologie".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Impression 3D – Biotechnologie"
Soliman, Mai, Alhanoof Aldegheishem, Norah Alsubaie, Razan Alshamrani y Elzahraa Eldwakhly. "Dimensional Accuracy of Working Dies Fabricated by Different Impression Materials and Techniques: 3D Digital Assessment". Journal of Biomaterials and Tissue Engineering 11, n.º 1 (1 de enero de 2021): 106–11. http://dx.doi.org/10.1166/jbt.2021.2552.
Texto completoRay, Marie-Céline. "Les nouvelles technologies au service de la santé". Questions internationales 91-92, n.º 3 (27 de junio de 2018): 83–92. http://dx.doi.org/10.3917/quin.091.0083.
Texto completoAlqahtani, Sultan Awad Hasan. "Enhancing dental practice". Brazilian Journal of Oral Sciences 23 (27 de septiembre de 2024): e0240115. http://dx.doi.org/10.20396/bjos.v23i00.8674785.
Texto completoAl-Aali, Khulud A., Abeer R. Alshehri, Hiba R. Talic, Ayaan A. Magan y Felwa K. Alhomody. "Dimensional Accuracy of 3D-Printed, Digital and Conventional Stone Dental Cast of Dentate Patients Using Arch and Teeth Measurements". Journal of Biomaterials and Tissue Engineering 13, n.º 7 (1 de julio de 2023): 803–7. http://dx.doi.org/10.1166/jbt.2023.3316.
Texto completoKustrzycka, Dorota, Tim Marschang, Marcin Mikulewicz y Wojciech Grzebieluch. "Comparison of the Accuracy of 3D Images Obtained fromDifferent Types of Scanners: A Systematic Review". Journal of Healthcare Engineering 2020 (14 de diciembre de 2020): 1–7. http://dx.doi.org/10.1155/2020/8854204.
Texto completoSalmi, Mika, Kaija-Stiina Paloheimo, Jukka Tuomi, Tuula Ingman y Antti Mäkitie. "A digital process for additive manufacturing of occlusal splints: a clinical pilot study". Journal of The Royal Society Interface 10, n.º 84 (6 de julio de 2013): 20130203. http://dx.doi.org/10.1098/rsif.2013.0203.
Texto completoNiu, Tianqi, Qifan Xue y Hin-Lap Yip. "Advances in Dion-Jacobson phase two-dimensional metal halide perovskite solar cells". Nanophotonics 10, n.º 8 (1 de junio de 2020): 2069–102. http://dx.doi.org/10.1515/nanoph-2021-0052.
Texto completoANDRÉ, Jean-Claude. "Impression 3D : niches applicatives porteuses". Fabrication additive – Impression 3D, abril de 2017. http://dx.doi.org/10.51257/a-v1-bm7970.
Texto completoSwain, Nilimapriyadarsini, Saravanakumar Balasubramaniam y Ananthakumar Ramadoss. "Effective Energy Storage Performance Derived from 3D Porous Dendrimer Architecture Metal Phosphides//Metal Nitride‐Sulfides". Small, 5 de febrero de 2024. http://dx.doi.org/10.1002/smll.202309800.
Texto completoYu, Diwen, Kaixuan Guo, Fengxiao Hou, Yangang Zhang, Xiaolin Ye, Yaohui Zhang, Puguang Ji et al. "Ti─O─C Bonding at 2D Heterointerfaces of 3D Composites for Fast Sodium Ion Storage at High Mass Loading Level". Small, 18 de abril de 2024. http://dx.doi.org/10.1002/smll.202312167.
Texto completoTesis sobre el tema "Impression 3D – Biotechnologie"
Abou, Nassif Lea. "Développement de bioencres naturelles enrichies par les composants de la gelée de Wharton pour la bioimpression 3D". Electronic Thesis or Diss., Reims, 2024. http://www.theses.fr/2024REIMS041.
Texto completo3D bioprinting is a promising technology for regenerative medicine, enabling the creation of biomimetic structures using specific bioinks. This thesis focuses on the development of bioactive bioinks, enriched with components from Wharton's Jelly (WJ) matrix. The WJ hydrogel, not being printable on its own, was combined with natural polymers such as alginate and gelatin to create a thermosensitive bioink. The printing parameters, especially temperature and pressure, were optimized to ensure better precision.Printed constructs from the alginate/type B gelatin formulation with or without WJ hydrogel, crosslinked with calcium chloride and transglutaminase (TG), provided an appropriate support for cells. However, the presence of WJ did not stimulate the recruitment or proliferation of mesenchymal stem cells (MSCs) or fibroblasts. Due to the potential immunogenicity of alginate and its negative impact on the behavior of printed cells, it was removed. The newest formulation was based on type A gelatin, more sensitive to TG activity. The printed fibroblasts in type A gelatin showed good viability after 21 days, but the addition of WJ hydrogel did not support cell viability after bioprinting. However, the addition of conditioned medium from WJ-derived MSCs enhanced the bioactivity of type A gelatine bioink