Literatura académica sobre el tema "Implosion"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Implosion".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Implosion"
Dewald, E. L., S. A. MacLaren, D. A. Martinez, J. E. Pino, R. E. Tipton, D. D. M. Ho, C. V. Young et al. "First graded metal pushered single shell capsule implosions on the National Ignition Facility". Physics of Plasmas 29, n.º 5 (mayo de 2022): 052707. http://dx.doi.org/10.1063/5.0083089.
Texto completoChoe, W. H. y R. C. Venkatesan. "Self-similar solutions of screw-pinch plasma implosion". Laser and Particle Beams 8, n.º 3 (septiembre de 1990): 485–91. http://dx.doi.org/10.1017/s0263034600008727.
Texto completoLindl, John D., Steven W. Haan y Otto L. Landen. "Impact of hohlraum cooling on ignition metrics for inertial fusion implosions". Physics of Plasmas 30, n.º 1 (enero de 2023): 012705. http://dx.doi.org/10.1063/5.0113138.
Texto completoManheimer, W. y D. Colombant. "Effects of viscosity in modeling laser fusion implosions". Laser and Particle Beams 25, n.º 4 (diciembre de 2007): 541–47. http://dx.doi.org/10.1017/s0263034607000663.
Texto completoBaker, K. L., O. Jones, C. Weber, D. Clark, P. K. Patel, C. A. Thomas, O. L. Landen et al. "Hydroscaling indirect-drive implosions on the National Ignition Facility". Physics of Plasmas 29, n.º 6 (junio de 2022): 062705. http://dx.doi.org/10.1063/5.0080732.
Texto completoLi, Chuanying, Jianfa Gu, Fengjun Ge, Zhensheng Dai y Shiyang Zou. "Impact of different electron thermal conductivity models on the performance of cryogenic implosions". Physics of Plasmas 29, n.º 4 (abril de 2022): 042702. http://dx.doi.org/10.1063/5.0066708.
Texto completoRoycroft, R., J. P. Sauppe y P. A. Bradley. "Double cylinder target design for study of hydrodynamic instabilities in multi-shell ICF". Physics of Plasmas 29, n.º 3 (marzo de 2022): 032704. http://dx.doi.org/10.1063/5.0083190.
Texto completoBarlow, D., T. Goffrey, K. Bennett, R. H. H. Scott, K. Glize, W. Theobald, K. Anderson et al. "Role of hot electrons in shock ignition constrained by experiment at the National Ignition Facility". Physics of Plasmas 29, n.º 8 (agosto de 2022): 082704. http://dx.doi.org/10.1063/5.0097080.
Texto completoNishimura, H., H. Shiraga, T. Endo, H. Takabe, M. Katayama, Y. Oshikane, M. Nakamura, Y. Kato y S. Nakai. "Radiation-driven cannonball targets for high-convergence implosions". Laser and Particle Beams 11, n.º 1 (marzo de 1993): 89–96. http://dx.doi.org/10.1017/s0263034600006947.
Texto completoChristopherson, A. R., R. Betti, C. J. Forrest, J. Howard, W. Theobald, E. M. Campbell, J. Delettrez et al. "Inferences of hot electron preheat and its spatial distribution in OMEGA direct drive implosions". Physics of Plasmas 29, n.º 12 (diciembre de 2022): 122703. http://dx.doi.org/10.1063/5.0091220.
Texto completoTesis sobre el tema "Implosion"
Gish, Lynn Andrew. "Analytic and numerical study of underwater implosion". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81699.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 203-205).
Underwater implosion, the rapid collapse of a structure caused by external pressure, generates a pressure pulse in the surrounding water that is potentially damaging to adjacent structures or personnel. Understanding the mechanics of implosion, specifically the energy transmitted in the pressure pulse, is critical to the safe and efficient design of underwater structures. Hydrostatically-induced implosion of unstiffened metallic cylinders was studied both analytically and numerically. An energy balance approach was used, based on the principle of virtual velocities. Semi-analytic solutions were developed for plastic energy dissipation of a symmetric mode 2 collapse; results agree with numerical simulations within 10%. A novel pseudo-coupled fluid-structure interaction method was developed to predict the energy transmitted in the implosion pulse; results agree with fully-coupled numerical simulations within 6%. The method provides a practical alternative to computationally-expensive simulations when a minimal reduction in accuracy is acceptable. Three design recommendations to reduce the severity of implosion are presented: (1) increase the structure's internal energy dissipation by triggering higher collapse modes, (2) initially pressurize the internals of the structure, and (3) line the cylinder with a flexible or energy absorbing material to cushion the impact between the structure's imploding walls. These recommendations may be used singly or in combination to reduce or completely eliminate the implosion pulse. However, any design efforts to reduce implosion severity must be part of the overall system design, since they may have detrimental effects on other performance areas like strength or survivability.
by Lynn Andrew Gish.
Ph.D.
Scardigli, Corinne. "Implosion : gestion des stocks par la replanification amont". Grenoble INPG, 1994. http://www.theses.fr/1994INPG0057.
Texto completoKrueger, Seth R. "Simulation of cylinder implosion initiated by an underwater explosion". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FKrueger.pdf.
Texto completoThesis Advisor(s): Young S. Shin. "June 2006." Includes bibliographical references (p. 99-100). Also available in print.
Szirti, Daniel. "Development of a single-stage implosion-driven hypervelocity launcher". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112585.
Texto completoSigley, Thomas E. "Evangelism implosion getting to the heart of the issue /". Theological Research Exchange Network (TREN), 1997. http://www.tren.com.
Texto completoKinnear, Timothy Michael. "Investigation into triggered star formation by radiative driven implosion". Thesis, University of Kent, 2016. https://kar.kent.ac.uk/52436/.
Texto completoSmith, Joel Aaron. "Implosion of steel fibre reinforced concrete cylinders under hydrostatic pressure". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ45939.pdf.
Texto completoCardoso, Pedro Daniel Martins Lucas. "The future of old-age pensions its explosion and implosion /". [Amsterdam : Amsterdam : Thela Thesis] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/76523.
Texto completoLoiseau, Jason. "Phase velocity techniques for the implosion of pressurized linear drivers". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94919.
Texto completoL'étude présente porte sur l'évaluation de plusieurs techniques pour générer une vitesse de phase dans un explosif afin de produire de très hautes vitesses de détonation sur des cibles linéaires ou cylindriques. En particulier, il a été démontré que le jumelage de deux composantes explosives ayant des vitesses de détonation différentes pour faire glisser une onde de détonation structurée est une méthode pouvant précisément générer des vitesses de phase désirées. La méthode de la division d'une onde de détonation dans plusieurs canaux individuels fut évaluée et il fut démontré qu'elle est aussi précise. Des modèles analytiques pour la conception des composantes explosives nécessaires à la production des vitesses de phase désirées en utilisant ces techniques sont présentés en détail. Une nouvelle méthode pour générer une vitesse de phase axisymétrique, implosive et linéaire a été également mise au point en faisant varier l'épaisseur de la paroi d'un tube métallique cylindrique. Il fut démontré que cet appareil est capable de produire des vitesses de phase, mais avec des écarts importants avec les prévisions analytiques. La technique qui utilise les deux composantes a également été appliquée à un tube à chocs explosif linéaire. Le tube à chocs a été construit à partir d'un tube métallique à parois mince et entouré par un anneau mince d'explosifs puis un tube de métal à parois épaisse. L'onde de détonation a été progressivement injectée par une mince fente dans le haut du tube à parois épaisse. Une onde de choc a été entraînée à des vitesses allant jusqu'à 11~km/s avec cet appareil.
Rallu, Arthur Seiji Daniel. "A multiphase fluid-structure computational framework for underwater implosion problems /". May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Texto completoLibros sobre el tema "Implosion"
Temple, L. Parker. Implosion. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118487105.
Texto completo(Group), Zadig. L' implosion française. Paris: A. Michel, 1992.
Buscar texto completoFunabashi, Yoichi, ed. Japan’s Population Implosion. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4983-5.
Texto completoMaking China: Cultural implosion. [Beijing?]: Shi jie hua ren yi shu chu ban she, 2002.
Buscar texto completoLindner, Gabriele. Die Eigenart der Implosion. Berlin: Kolog-Verl., 1994.
Buscar texto completoRick, Poynor, ed. Typography now two: Implosion. London: Booth-Clibborn Editions, 1998.
Buscar texto completoL' implosion du monde. Paris: la Différence, 2007.
Buscar texto completoDalla Longa, Remo. Globalization and Urban Implosion. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-70512-3.
Texto completoThe implosion of American federalism. Oxford: Oxford University Press, 2001.
Buscar texto completoWlasenko, Olexander. Energy implosion: The (905) imagination. Oshawa, Ont: Robert McLaughlin Gallery, 2001.
Buscar texto completoCapítulos de libros sobre el tema "Implosion"
Bakardjieva, Maria. "Home Implosion". En Happiness and Domestic Life, 57–72. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003265702-7.
Texto completoStrauss, Wolfgang y Monika Fleischmann. "Implosion of Numbers". En Disappearing Architecture, 118–31. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7674-0_10.
Texto completode Jong, Thimon. "Implosion of Trust". En Future Human Behavior, 50–52. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003227144-10.
Texto completoWeidenfeld, Ursula. "Implosion einer Krisenkanzlerin?" En Zeitenwende, 127–35. Göttingen: Vandenhoeck & Ruprecht, 2022. http://dx.doi.org/10.13109/9783666800351.127.
Texto completoJarausch, Konrad H. "Implosion oder Selbstbefreiung?" En Deutsche Umbrüche im 20. Jahrhundert, 543–66. Köln: Böhlau Verlag, 2000. http://dx.doi.org/10.7788/boehlau.9783412319687.543.
Texto completoHidekazu, Inagawa. "Introduction". En Japan’s Population Implosion, 1–25. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_1.
Texto completoKiyoto, Matsuda, Arai Junji y Nagao Takashi. "Countering Falling Regional Population with Business". En Japan’s Population Implosion, 197–215. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_10.
Texto completoFunabashi, Yoichi. "Policy Proposals". En Japan’s Population Implosion, 217–27. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_11.
Texto completoFumihiko, Seta, Otake Hiroshi y Umeyama Goro. "The Greater Tokyo Shock". En Japan’s Population Implosion, 27–49. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_2.
Texto completoChikako, Igarashi, Akiyama Yuki y Kamiya Kenichi. "A Collapse in Regional Infrastructure". En Japan’s Population Implosion, 51–78. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4983-5_3.
Texto completoActas de conferencias sobre el tema "Implosion"
Seporaitis, Marijus, Raimondas Pabarcius y Kazys Almenas. "Study of Controlled Condensation Implosion Events". En 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22448.
Texto completoChannell, P. J. "Radial implosion acceleration". En AIP Conference Proceedings Volume 130. AIP, 1985. http://dx.doi.org/10.1063/1.35277.
Texto completoMuttaqie, Teguh, Jung-Min Sohn, Sang-Rai Cho, Sang-Hyun Park, Gulgi Choi, Soonhung Han, Phill-Seung Lee y Yoon Sik Cho. "Implosion Tests of Aluminium Alloy Tubes Under External Hydrostatic Pressure". En ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77375.
Texto completoKullberg, C. M. "A Method for Estimating Acoustic Implosion Efficiencies for Collapsing Cavities in Nuclear Reactor Systems". En ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1130.
Texto completoBaksht, R. B., I. M. Datsko, A. V. Luchinsky, V. I. Oreshkin, A. V. Fedyunin, Yu D. Korolev, I. A. Shemyakin, V. G. Rabotkin, Malcolm Haines y Andrew Knight. "Implosion of Multilayer Liners". En DENSE Z-PINCHES: Third International Conference. AIP, 1994. http://dx.doi.org/10.1063/1.2949179.
Texto completoWang, Kevin G., Patrick Lea, Alex Main, Owen McGarity y Charbel Farhat. "Predictive Simulation of Underwater Implosion: Coupling Multi-Material Compressible Fluids With Cracking Structures". En ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23341.
Texto completoWoelke, Pawel, Margaret Tang, Scott McClennan, Najib Abboud, Darren Tennant, Adam Hapij y Mohammed Ettouney. "Impact Mitigation for Buried Structures: Demolition of the New Haven Veterans Memorial Coliseum". En ASME 2007 Pressure Vessels and Piping Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/pvp2007-26817.
Texto completoBaum, Carl E. "Electromagnetic Implosion Using an Array". En 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345579.
Texto completoBaum, Carl E. "Electromagnetic implosion using an array". En 2007 IEEE International Pulsed Power Plasma Science Conference (PPPS 2007). IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4651846.
Texto completoCheng, Xingxing, Baosheng Jin y Wenqi Zhong. "Numerical Simulation of Boiler Implosion". En 2009 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2009. http://dx.doi.org/10.1109/appeec.2009.4918535.
Texto completoInformes sobre el tema "Implosion"
Gocharov, V. y O. Hurricane. Panel 3 Report: Implosion Hydrodynamics. Office of Scientific and Technical Information (OSTI), junio de 2012. http://dx.doi.org/10.2172/1078544.
Texto completoCable, M. D., S. P. Hatchett, M. B. Nelson, R. A. Lerche, T. J. Murphy y D. B. Ress. High density implosion experiments at Nova. Office of Scientific and Technical Information (OSTI), febrero de 1994. http://dx.doi.org/10.2172/10146659.
Texto completoKline, John L. Pre-shot viewgraphs for first DT layered Beryllium Implosion. Office of Scientific and Technical Information (OSTI), julio de 2015. http://dx.doi.org/10.2172/1196195.
Texto completoHurricane, O. High-foot Implosion Workshop (March 22-24, 2016) Report. Office of Scientific and Technical Information (OSTI), mayo de 2016. http://dx.doi.org/10.2172/1258520.
Texto completoSauppe, Joshua. The Cylindrical Implosion Platform: Recent Results and Next Steps. Office of Scientific and Technical Information (OSTI), junio de 2020. http://dx.doi.org/10.2172/1631563.
Texto completoSerrano, Jason Dimitri, Alexander S. Chuvatin, M. C. Jones, Roger Alan Vesey, Eduardo M. Waisman, V. V. Ivanov, Andrey A. Esaulov et al. Compact wire array sources: power scaling and implosion physics. Office of Scientific and Technical Information (OSTI), septiembre de 2008. http://dx.doi.org/10.2172/941403.
Texto completoAkkor, Gun, John S. Baras y Michael Hadjitheodosiou. A Feedback Implosion Suppression Algorithm for Satellite Reliable Multicast. Fort Belvoir, VA: Defense Technical Information Center, enero de 2003. http://dx.doi.org/10.21236/ada637177.
Texto completoHurricane, O. The high-foot implosion campaign on the National Ignition Facility. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1129989.
Texto completoKline, John L. Maximizing 1D “like” implosion performance for inertial confinement fusion science. Office of Scientific and Technical Information (OSTI), julio de 2016. http://dx.doi.org/10.2172/1261806.
Texto completoBorovina, Dan y Eric Brown. The Trinity High Explosive Implosion System: The Foundation for Precision Explosive Applications. Office of Scientific and Technical Information (OSTI), enero de 2021. http://dx.doi.org/10.2172/1764181.
Texto completo