Literatura académica sobre el tema "Implicit regularization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Implicit regularization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Implicit regularization"
Ceng, Lu-Chuan, Qamrul Hasan Ansari y Ching-Feng Wen. "Implicit Relaxed and Hybrid Methods with Regularization for Minimization Problems and Asymptotically Strict Pseudocontractive Mappings in the Intermediate Sense". Abstract and Applied Analysis 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/854297.
Texto completoFARGNOLI, H. G., A. P. BAÊTA SCARPELLI, L. C. T. BRITO, B. HILLER, MARCOS SAMPAIO, M. C. NEMES y A. A. OSIPOV. "ULTRAVIOLET AND INFRARED DIVERGENCES IN IMPLICIT REGULARIZATION: A CONSISTENT APPROACH". Modern Physics Letters A 26, n.º 04 (10 de febrero de 2011): 289–302. http://dx.doi.org/10.1142/s0217732311034773.
Texto completoSampaio, Marcos, A. P. Baêta Scarpelli, J. E. Ottoni y M. C. Nemes. "Implicit Regularization and Renormalization of QCD". International Journal of Theoretical Physics 45, n.º 2 (febrero de 2006): 436–57. http://dx.doi.org/10.1007/s10773-006-9045-z.
Texto completoAl-Tam, Faroq, António dos Anjos y Hamid Reza Shahbazkia. "Iterative illumination correction with implicit regularization". Signal, Image and Video Processing 10, n.º 5 (11 de diciembre de 2015): 967–74. http://dx.doi.org/10.1007/s11760-015-0847-4.
Texto completoDandi, Yatin, Luis Barba y Martin Jaggi. "Implicit Gradient Alignment in Distributed and Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junio de 2022): 6454–62. http://dx.doi.org/10.1609/aaai.v36i6.20597.
Texto completoLin, Huangxing, Yihong Zhuang, Xinghao Ding, Delu Zeng, Yue Huang, Xiaotong Tu y John Paisley. "Self-Supervised Image Denoising Using Implicit Deep Denoiser Prior". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 2 (26 de junio de 2023): 1586–94. http://dx.doi.org/10.1609/aaai.v37i2.25245.
Texto completoLiu, Yuan, Yanzhi Song, Zhouwang Yang y Jiansong Deng. "Implicit surface reconstruction with total variation regularization". Computer Aided Geometric Design 52-53 (marzo de 2017): 135–53. http://dx.doi.org/10.1016/j.cagd.2017.02.005.
Texto completoLi, Zhemin, Tao Sun, Hongxia Wang y Bao Wang. "Adaptive and Implicit Regularization for Matrix Completion". SIAM Journal on Imaging Sciences 15, n.º 4 (22 de noviembre de 2022): 2000–2022. http://dx.doi.org/10.1137/22m1489228.
Texto completoBelytschko, T., S. P. Xiao y C. Parimi. "Topology optimization with implicit functions and regularization". International Journal for Numerical Methods in Engineering 57, n.º 8 (2003): 1177–96. http://dx.doi.org/10.1002/nme.824.
Texto completoRosado, R. J. C., A. Cherchiglia, M. Sampaio y B. Hiller. "An Implicit Regularization Approach to Chiral Models". Acta Physica Polonica B Proceedings Supplement 17, n.º 6 (2024): 1. http://dx.doi.org/10.5506/aphyspolbsupp.17.6-a15.
Texto completoTesis sobre el tema "Implicit regularization"
Loy, Kak Choon. "Efficient Semi-Implicit Time-Stepping Schemes for Incompressible Flows". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36442.
Texto completoAyme, Alexis. "Supervised learning with missing data : a non-asymptotic point of view". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS252.
Texto completoMissing values are common in most real-world data sets due to the combination of multiple sources andinherently missing information, such as sensor failures or unanswered survey questions. The presenceof missing values often prevents the application of standard learning algorithms. This thesis examinesmissing values in a prediction context, aiming to achieve accurate predictions despite the occurrence ofmissing data in both training and test datasets. The focus of this thesis is to theoretically analyze specific algorithms to obtain finite-sample guarantees. We derive minimax lower bounds on the excess risk of linear predictions in presence of missing values.Such lower bounds depend on the distribution of the missing pattern, and can grow exponentially withthe dimension. We propose a very simple method consisting in applying Least-Square procedure onthe most frequent missing patterns only. Such a simple method turns out to be near minimax-optimalprocedure, which departs from the Least-Square algorithm applied to all missing patterns. Followingthis, we explore the impute-then-regress method, where imputation is performed using the naive zeroimputation, and the regression step is carried out via linear models, whose parameters are learned viastochastic gradient descent. We demonstrate that this very simple method offers strong finite-sampleguarantees in high-dimensional settings. Specifically, we show that the bias of this method is lowerthan the bias of ridge regression. As ridge regression is often used in high dimensions, this proves thatthe bias of missing data (via zero imputation) is negligible in some high-dimensional settings. Thesefindings are illustrated using random features models, which help us to precisely understand the role ofdimensionality. Finally, we study different algorithm to handle linear classification in presence of missingdata (logistic regression, perceptron, LDA). We prove that LDA is the only model that can be valid forboth complete and missing data for some generic settings
Estecahandy, Elodie. "Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique". Phd thesis, Université de Pau et des Pays de l'Adour, 2013. http://tel.archives-ouvertes.fr/tel-00880628.
Texto completoPereira, Ana Isabel Costa. "Implicit Regularization in a QCD decay of the Higgs boson". Master's thesis, 2021. http://hdl.handle.net/10316/98040.
Texto completoO regime perturbativo de Cromodinâmica Quântica envolve o aparecimento de divergências nas amplitudes de um processo. No entanto, as observáveis físicas devem ser finitas e, portanto, todas as divergências que surgem devem ser canceladas. De acordo com o teorema KLN, as divergências infravermelhas que aparecem numa taxa de decaimento ou secção eficaz em QCD devem cancelar-se ao juntar as contribuições das partes virtual e real que contribuem para a mesma ordem em teoria de perturbações. Neste trabalho, o objetivo principal é calcular a taxa de decaimento do bosão de Higgs em gluões modelado por um Lagrangiano efetivo no limite da massa do quark top infinita, e verificar o cancelamento das divergências. Para tal, derivamos as regras de Feynman do Lagrangiano efetivo para descrever a interação entre os gluões e o bosão de Higgs e estas são usadas para construir as amplitudes dos diagramas virtuais e reais do processo. Em seguida, usamos a IReg, que é um esquema de regularização não dimensional que trabalha na dimensão física da teoria e permite a separação das divergências de ultravioleta e infravermelhas de uma amplitude. Os integrais divergentes de ultravioleta são escritos como integrais divergentes básicos e os integrais finitos são avaliados usando o software Mathematica. Em seguida, usamos esses integrais para calcular a taxa de decaimento virtual do processo como uma correção à taxa de decaimento a nível árvore. Introduzimos o formalismo de spin-helicidade para calcular a amplitude real. Em seguida, estudamos o cálculo explícito do espaço fase do decaimento real e integramos a amplitude real ao longo das variáveis de integração do espaço fase para obter o decaimento real. Por fim, somamos as contribuições das taxas de decaimento virtual e real para obter o resultado final, que reproduz resultados conhecidos da literatura.
Perturbative Quantum Chromodynamics involves the appearance of divergences in the amplitudes of a process. However, physical observables must befinite and therefore, all the divergences that emerge must be cancelled. The KLN theorem states that the infrared divergences that appear in a QCD decay rate or cross section must cancel when putting together the contributions from the virtual and real parts that contribute at the same order in perturbation theory. In this work, the main goal is to calculate the decay rate of the QCD decay of the Higgs boson into gluons modeled by an effective Lagrangian in the limit of infinite top quark mass and verify the KLN theorem, using the Implicit Regularization (IReg) as opposed to Dimensional Regularization. We derive the Feynman rules of the effective Lagrangian to describe the interaction between gluons and the Higgs boson and use them to construct the amplitudes of the process’ virtual and real diagrams.We then use IReg, which is a non-dimensional regularization scheme that works in the physical dimension of the theory and allows for the separation of the ultraviolet and infrared divergences of an amplitude. The ultraviolet divergent integrals are written as basic divergent integrals and the finite integrals are evaluated using the software Mathematica. We then use these integrals to compute the virtual decay rate of the process as a correction to the tree-level decay rate. We introduce the spin-helicity formalism to compute the real amplitude. We then study the explicit computation of the phase space of the real decay and integrate the squared real amplitude over the phase space to obtain the real decay. At last, we add the contributions from both virtual and real decay rates to obtain the final result which is finite as expected, reproducing known results in the literature.
Outro - CERN/FIS-PAR/0040/2019
Capítulos de libros sobre el tema "Implicit regularization"
Shafrir, David, Nir A. Sochen y Rachid Deriche. "Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension". En Lecture Notes in Computer Science, 344–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11567646_29.
Texto completoWahba, G. "Regularization and Cross Validation Methods for Nonlinear, Implicit, Ill-posed Inverse Problems". En Geophysical Data Inversion Methods and Applications, 3–13. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-89416-8_1.
Texto completoZavarise, Giorgio, Laura De Lorenzis y Robert L. Taylor. "On Regularization of the Convergence Path for the Implicit Solution of Contact Problems". En Recent Developments and Innovative Applications in Computational Mechanics, 17–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17484-1_3.
Texto completoUsenov, Izat. "Combined Regularization Method for Solving an Implicit Operator Equation of the First Kind". En Lecture Notes in Networks and Systems, 24–33. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-64010-0_3.
Texto completoMenini, Anne, Pierre-André Vuissoz, Jacques Felblinger y Freddy Odille. "Joint Reconstruction of Image and Motion in MRI: Implicit Regularization Using an Adaptive 3D Mesh". En Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012, 264–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33415-3_33.
Texto completoSpieker, Veronika, Hannah Eichhorn, Jonathan K. Stelter, Wenqi Huang, Rickmer F. Braren, Daniel Rueckert, Francisco Sahli Costabal et al. "Self-supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representations". En Lecture Notes in Computer Science, 614–24. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72104-5_59.
Texto completoEhrhardt, Jan y Heinz Handels. "Implicitly Solved Regularization for Learning-Based Image Registration". En Machine Learning in Medical Imaging, 137–46. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-45673-2_14.
Texto completoBanerjee, Ayan y Sandeep K. S. Gupta. "Recovering Implicit Physics Model Under Real-World Constraints". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240556.
Texto completoXiao, Jinying, Ping Li y Jie Nie. "TED: Accelerate Model Training by Internal Generalization". En Frontiers in Artificial Intelligence and Applications. IOS Press, 2024. http://dx.doi.org/10.3233/faia240823.
Texto completoThomas, Dominic. "Les Sans-papiers". En Postcolonial Realms of Memory, 255–66. Liverpool University Press, 2020. http://dx.doi.org/10.3828/liverpool/9781789620665.003.0024.
Texto completoActas de conferencias sobre el tema "Implicit regularization"
Xu, Qunzhi, Yi Yu y Yajun Mei. "Quickest Detection in High-Dimensional Linear Regression Models via Implicit Regularization". En 2024 IEEE International Symposium on Information Theory (ISIT), 1059–64. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619577.
Texto completoGunasekar, Suriya, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur y Nathan Srebro. "Implicit Regularization in Matrix Factorization". En 2018 Information Theory and Applications Workshop (ITA). IEEE, 2018. http://dx.doi.org/10.1109/ita.2018.8503198.
Texto completoMilanesi, Paolo, Hachem Kadri, Stephane Ayache y Thierry Artieres. "Implicit Regularization in Deep Tensor Factorization". En 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533690.
Texto completoDupe, Francois Xavier, Sebastien Bougleux, Luc Brun, Olivier Lezoray y Abderahim Elmoataz. "Kernel-Based Implicit Regularization of Structured Objects". En 2010 20th International Conference on Pattern Recognition (ICPR). IEEE, 2010. http://dx.doi.org/10.1109/icpr.2010.525.
Texto completoYao, Tianyi, Daniel LeJeune, Hamid Javadi, Richard G. Baraniuk y Genevera I. Allen. "Minipatch Learning as Implicit Ridge-Like Regularization". En 2021 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2021. http://dx.doi.org/10.1109/bigcomp51126.2021.00021.
Texto completoHuang, Xiaoyang, Yi Zhang, Kai Chen, Teng Li, Wenjun Zhang y Bingbing Ni. "Learning Shape Primitives via Implicit Convexity Regularization". En 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. http://dx.doi.org/10.1109/iccv51070.2023.00337.
Texto completoCherchiglia, A. "Systematizing Implicit Regularization for Multi-Loop Feynman Diagrams". En 4th International Conference on Fundamental Interactions. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.124.0016.
Texto completoCataltepe, Zehra, Mahiye Uluyagmur y Esengul Tayfur. "TV program recommendation using implicit feedback with adaptive regularization". En 2012 20th Signal Processing and Communications Applications Conference (SIU). IEEE, 2012. http://dx.doi.org/10.1109/siu.2012.6204780.
Texto completoKumar, Akshay, Akshay Malhotra y Shahab Hamidi-Rad. "Group Sparsity via Implicit Regularization for MIMO Channel Estimation". En 2023 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2023. http://dx.doi.org/10.1109/wcnc55385.2023.10118737.
Texto completoYao, Lina, Xianzhi Wang, Quan Z. Sheng, Wenjie Ruan y Wei Zhang. "Service Recommendation for Mashup Composition with Implicit Correlation Regularization". En 2015 IEEE International Conference on Web Services (ICWS). IEEE, 2015. http://dx.doi.org/10.1109/icws.2015.38.
Texto completo