Literatura académica sobre el tema "Immunology, Neutrophil"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Immunology, Neutrophil".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Immunology, Neutrophil"
Cavallaro, Elena C., Kar-Kate Liang, Kevin D. Forsyth y Dani-Louise Dixon. "Neutrophil polarization in the airways of infants with bronchiolitis". Journal of Immunology 198, n.º 1_Supplement (1 de mayo de 2017): 55.30. http://dx.doi.org/10.4049/jimmunol.198.supp.55.30.
Texto completoForlow, S. Bradley, Jill R. Schurr, Jay K. Kolls, Gregory J. Bagby, Paul O. Schwarzenberger y Klaus Ley. "Increased granulopoiesis through interleukin-17 and granulocyte colony-stimulating factor in leukocyte adhesion molecule–deficient mice". Blood 98, n.º 12 (1 de diciembre de 2001): 3309–14. http://dx.doi.org/10.1182/blood.v98.12.3309.
Texto completoMizgerd, J. P., B. B. Meek, G. J. Kutkoski, D. C. Bullard, A. L. Beaudet y C. M. Doerschuk. "Selectins and neutrophil traffic: margination and Streptococcus pneumoniae-induced emigration in murine lungs." Journal of Experimental Medicine 184, n.º 2 (1 de agosto de 1996): 639–45. http://dx.doi.org/10.1084/jem.184.2.639.
Texto completoHarvath, L., K. B. Yancey y S. I. Katz. "Selective inhibition of human neutrophil chemotaxis to N-formyl-methionyl-leucyl-phenylalanine by sulfones." Journal of Immunology 137, n.º 4 (15 de agosto de 1986): 1305–11. http://dx.doi.org/10.4049/jimmunol.137.4.1305.
Texto completoWang, Jun-Xia y Peter Nigrovic. "CD177 participates in a novel mechanism for regulating neutrophil recruitment (P3093)". Journal of Immunology 190, n.º 1_Supplement (1 de mayo de 2013): 43.9. http://dx.doi.org/10.4049/jimmunol.190.supp.43.9.
Texto completoWang, Guoshun y Hang Pong Ng. "Myeloid CFTR Loss-of-function Causes Persistent Neutrophilic Inflammation in Cystic Fibrosis". Journal of Immunology 202, n.º 1_Supplement (1 de mayo de 2019): 187.33. http://dx.doi.org/10.4049/jimmunol.202.supp.187.33.
Texto completoGadjeva, Mihaela, Abirami Kugadas, Anastasia Petenkova, Jennifer Geddes-McAlister, Michael K. Mansour y David Sykes. "Neutrophil maturation and their response to infectious pathogens are regulated by microbiota". Journal of Immunology 202, n.º 1_Supplement (1 de mayo de 2019): 127.22. http://dx.doi.org/10.4049/jimmunol.202.supp.127.22.
Texto completoBorges, Leandro, Tania Cristina Pithon-Curi, Rui Curi y Elaine Hatanaka. "COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps". Mediators of Inflammation 2020 (2 de diciembre de 2020): 1–7. http://dx.doi.org/10.1155/2020/8829674.
Texto completoBrinkworth, Jessica F., Kathrine Van Etten, Priya Bhatt, Keaton McClure, Negin Valizadegan, Minkyu Woo, Suvanthee Gunasekera, Yaravi Suarez y Brian Aldridge. "Functional comparison of human and non-human primate neutrophil responses". Journal of Immunology 202, n.º 1_Supplement (1 de mayo de 2019): 73.21. http://dx.doi.org/10.4049/jimmunol.202.supp.73.21.
Texto completoShelite, Thomas R., Nicole L. Mendell, Donald H. Bouyer, David Hughes Walker y Lynn Soong. "The role of neutrophils during Orientia infection." Journal of Immunology 196, n.º 1_Supplement (1 de mayo de 2016): 66.28. http://dx.doi.org/10.4049/jimmunol.196.supp.66.28.
Texto completoTesis sobre el tema "Immunology, Neutrophil"
Eckert, Rachael. "Molecular Mechanisms of Neutrophil Migration". NCSU, 2007. http://www.lib.ncsu.edu/theses/available/etd-10312007-134315/.
Texto completoRochon, Yvan P. (Yvan Pierre). "Dynamics of neutrophil aggregation". Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=70210.
Texto completoMacdonald, Elizabeth A. "Bovine neutrophil functionality in mastitis resistance". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68211.
Texto completoBradford, Elaine Alison. "Proposed in vitro model of neutrophil swarming in a chronic, low-level inflammatory state". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/102737.
Texto completoMaster of Science
Kirsch, Richard. "Characterisation of fibrinogen and fibrin proteolysis by the neutrophil membrane". Doctoral thesis, University of Cape Town, 1999. http://hdl.handle.net/11427/26928.
Texto completoHoenderdos, Kim. "Modulation of neutrophil degranulation by hypoxia". Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/247459.
Texto completoChen, Justin. "The effect of hyperleptinemia on polymorphonuclear neutrophil-endothelial interactions /". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101709.
Texto completoMale CD1 background mice (6-8 weeks) were divided to 3 treatment groups receiving once daily ip injections (1) sham (PBS); (2) low leptin (1mug/g); (3) high leptin (5mug/g). After 7 days of treatment, intravital microscopy was used to visualize post-capillary venule microcirculation of the cremaster muscle in the scrotum. Parameters such as neutrophil rolling, rolling velocity, preadherence, and adherence, were recorded and measured to assess PMN kinetics.
High doses of leptin resulted in increased preadherence and adherence of neutrophils in post-capillary venules. Serum leptin and TNFalpha levels were found not to correlate with this observation; consequently, potential pathways through which leptin increases PMN adhesion could not be elucidated. Conceivably, excessive adhesion could adversely affect neutrophil trafficking by producing a shift towards the marginal pool, limiting their ability to appropriately home into bacterial targets. This could parallel the situation in morbid obesity where high concentrations of leptin are also observed.
Boespflug, Nicholas. "ATF3 regulates neutrophil migration in mice". University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1382372804.
Texto completoLin, Yongqing. "Study of neutrophil diapedesis across a bovine mammary epithelium in vitro". Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=22761.
Texto completoChung, Henry Hung Li. "Engineered Microenvironment for Quantitative Studies of Neutrophil Migration". Thesis, University of Rochester, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686523.
Texto completoCell migration is present in virtually all life processes, including fertilization, embryogenic development, immune response, wound healing, and tumor metastasis. To improve the treatment of diseases associated with these various life processes, it is important to understand the underlying mechanisms of cell migration involved. This often requires that we recreate the environment that leads to and supports the continuous migration of cells. Here, we present two engineering approaches toward such a goal, with the additional emphasis that cell migration can be conducted in the absence of fluid flow, a mechanical stimulus that is known to influence cell behaviors. We chose the primary human neutrophil, which is highly motile and sensitive to both fluid flow and chemoattraction, as the model cell type for all our studies.
In the first approach, we used fluid flow to create a linear and time-invariant gradient of chemoattractants to guide the migration of neutrophils. A thin and porous membrane was used to screen off the associated flow forces while still permitting the diffusion of the gradient to the neutrophils. We showed that the membrane-based system is capable of directing neutrophil migration without the bias from fluid flow, and allowed within minutes the exchange of media to label and wash the migrated neutrophils. To assess the reduction of flow forces enabled by the membrane, we developed an analytical model to predict the direction and the magnitude of flow within the system. The validity of the model was verified both experimentally and numerically with particle tracking and computational fluid mechanic (CFM) simulations. We also performed total internal reflection fluorescence (TIRF) microscopy to verify the preservation of the gradient after v its diffusion through the membrane.
In the second approach, we created immobilized gradients of the chemoattractant interleukin 8 (IL-8) and the intercellular adhesion molecule 1 (ICAM-1) in the attempt to guide neutrophil migration. A gradient of soluble factors is first established, and the resulting difference of concentration over space leads to a bias in the binding of the soluble factors unto the substrate, forming an immobilized gradient. The immobilization is mediated by a combination of different physicochemical linkages, including electrostatic attraction, protein/protein interactions, and covalent bonding. We showed through labeling with fluorescent antibody that the number of IL-8 or ICAM-1 immobilized in a given area could be controlled, and varied over distances to form different gradient profiles. We further showed that our immobilization procedure does not affect the ability of IL-8 and ICAM-1 to activate and bind the neutrophils. However, with all the immobilized gradients that we have created so far, none were able to effectively promote the directed migration of neutrophils in long distances. Additional work is therefore required to establish if an immobilized gradient of either IL-8 or ICAM-1 alone can direct the migration of neutrophils in long distances, and if it does, what are the required conditions. Currently, our efforts suggest that the membrane-based chemotaxis system is a more attainable platform for promoting a directed migration that is shear-free.
The presented thesis work offers many potential applications. The membrane-based chemotaxis system, which has the general structure of two compartments separated by a membrane, resembled many physiological structures, including bone marrow, blood vessel, blood-brain barrier, hepatic portal vein, nephron in the kidneys, and alveolus in vi the lungs, and therefore serves as a versatile platform for understanding the transport phenomenon and the biochemical signaling in the aforementioned tissues. With improvements, the membrane-based system can also host larger-scale cell culture for protein production and tissue engineering. The protocols established for the gradient immobilization also provided many valuable references. These include: 1. A 1st order approximation of the reagents and the times required to fully saturate the substrate to be functionalized. 2. An automated image processing tool to measure the various parameters of cell motility. 3. A statistical framework to detect the presence of a directed migration. In theory, the standard operating procedures established are applicable to the surface functionalization with other peptides and proteins.
Libros sobre el tema "Immunology, Neutrophil"
A, Metcalf Julia, ed. Laboratory manual of neutrophil function. New York: Raven Press, 1986.
Buscar texto completoLilliehook, Inger. Studies of blood eosinophil and neutrophil granulocytes in health and diseased dogs. Uppsala: Sveriges Lantbruksuniversitet, 1999.
Buscar texto completoBerezhnai͡a, N. M. Neĭtrofily i immunologicheskiĭ gomeostaz. Kiev: Nauk. dumka, 1988.
Buscar texto completoAlonso-Fernández, Patricia. Neutrophils in biological age and longevity. New York: Nova Science Publishers, Inc., 2011.
Buscar texto completoThe Neutrophil: An Emerging Regulator of Inflammatory and Immune Response (Chemical Immunology). Not Avail, 2003.
Buscar texto completoDeLeo, Frank y Mark T. Quinn. Neutrophil: Methods and Protocols. Springer, 2019.
Buscar texto completoDeLeo, Frank R. y Mark T. Quinn. Neutrophil: Methods and Protocols. Springer, 2020.
Buscar texto completoMarzano, Angelo Valerio, Dan Lipsker y Massimo Cugno, eds. Neutrophil-mediated skin diseases: immunology and genetics. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88963-254-1.
Texto completoImmunopharmacology of neutrophils. London: Academic Press, 1994.
Buscar texto completoHellewell, Paul G., Clive Page y Timothy J. Williams. Immunopharmacology of Neutrophils. Elsevier Science & Technology Books, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Immunology, Neutrophil"
Dockrell, David H., Emmet E. McGrath, Moria K. B. Whyte y Ian Sabroe. "The Neutrophil". En Immunology of Fungal Infections, 51–73. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/1-4020-5492-0_3.
Texto completoEdwards, S. W., D. A. Moulding, M. Derouet y R. J. Moots. "Regulation of Neutrophil Apoptosis". En Chemical Immunology and Allergy, 204–24. Basel: KARGER, 2003. http://dx.doi.org/10.1159/000071562.
Texto completoHolland, Steven M. "Neutropenia and Neutrophil Defects". En Manual of Molecular and Clinical Laboratory Immunology, 766–74. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555818722.ch78.
Texto completoUciechowski, Peter y Lothar Rink. "Basophil, Eosinophil, and Neutrophil Functions in the Elderly". En Immunology of Aging, 47–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39495-9_5.
Texto completoBaggiolini, M., A. Walz, T. Brunner, B. Dewald, V. von Tscharner, R. Zwahlen, C. Dahinden et al. "Novel Neutrophil-Activating Peptides and Their Role in Inflammation". En Progress in Immunology, 765–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83755-5_104.
Texto completoHannigan, M. O., C. K. Huang y D. Q. Wu. "Roles of PI3K in Neutrophil Function". En Current Topics in Microbiology and Immunology, 165–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18805-3_6.
Texto completoSha’afi, R. I. y T. F. P. Molski. "Activation of the Neutrophil (Part 1 of 4)". En Chemical Immunology and Allergy, 1–16. Basel: KARGER, 1988. http://dx.doi.org/10.1159/000318681.
Texto completoSha’afi, R. I. y T. F. P. Molski. "Activation of the Neutrophil (Part 2 of 4)". En Chemical Immunology and Allergy, 17–32. Basel: KARGER, 1988. http://dx.doi.org/10.1159/000318683.
Texto completoSha’afi, R. I. y T. F. P. Molski. "Activation of the Neutrophil (Part 3 of 4)". En Chemical Immunology and Allergy, 33–49. Basel: KARGER, 1988. http://dx.doi.org/10.1159/000318684.
Texto completoSha’afi, R. I. y T. F. P. Molski. "Activation of the Neutrophil (Part 4 of 4)". En Chemical Immunology and Allergy, 50–64. Basel: KARGER, 1988. http://dx.doi.org/10.1159/000318685.
Texto completoActas de conferencias sobre el tema "Immunology, Neutrophil"
Wu, Julie, Anne Pipathsouk, A. Keizer-Gunnink, Wynand Alkema, Fabrizia Fusetti, Shanshan Liu, Steve Atschuler, Lani Wu, Arjan Kortholt y Orion Weiner. "Abstract B48: Homer3 regulates the establishment of neutrophil polarity". En Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-b48.
Texto completoKumagai, Yuko, Rihito Kanamaru, Hideyuki Ohzawa, Hisanaga Horie, Yoshinori Hosoya, Naohiro Sata y Joji Kitayama. "Abstract B77: Low-density neutrophils (LDN) in circulating blood of postoperative patients may participate in the development of distant recurrence through the production of neutrophil extracellular traps (NETs)". En Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-b77.
Texto completoYazdani, Hamza O., Christof T. Kaltenmeier, David Geller y Samer Tohme. "Abstract A97: Neutrophil extracellular traps (NETs) promote immune escape and metastatic growth after surgical stress". En Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-a97.
Texto completoMollaoglu, Gurkan, Alex Jones, Sarah Wait, Anandaroop Mukhopadhyay, Sangmin Jeong, Rahul Arya, Soledad Camolotto et al. "Abstract B72: Lineage specifiers SOX2 and NKX2-1 inversely regulate tumor cell fate and neutrophil recruitment in lung cancer". En Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 27-30, 2018; Miami Beach, FL. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm18-b72.
Texto completoSeitz, R., M. Wolf, R. Egbring y K. Havemann. "Neutrophil Elastase, Thrombin and Plasmin in Septic Shock: Influence on Prognosis". En XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643894.
Texto completoRayes, Roni F., Alexandra Tinfow, Dorothy Antonatos, France Bourdeau, Betty Giannias y Jonathan D. Spicer. "Abstract B41: Neutrophils modulate T-cell recruitment and promote hepatic metastases in lung cancer". En Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 1-4, 2017; Boston, MA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/2326-6074.tumimm17-b41.
Texto completoMishalian, Inbal, Rachel Bayuh, Lida Zolotarov, Liran Levy, Sunil Singhal, Steven M. Albelda y Zvi Gregorio Fridlender. "Abstract A68: Tumor-associated neutrophils (TAN) develop protumorigenic properties during tumor progression." En Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-a68.
Texto completoSippel, Trisha R., Rae Russell, Timothy Ung, Marci Klaassen y Allen Waziri. "Abstract A44: Disrupted transmigration of neutrophils in glioblastoma patients is augmented by steroid treatment." En Abstracts: AACR Special Conference on Tumor Immunology: Multidisciplinary Science Driving Basic and Clinical Advances; December 2-5, 2012; Miami, FL. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.tumimm2012-a44.
Texto completoHerbst, Brian, Elizabeth Jaffee y Lei Zheng. "Abstract PR10: Inhibition of MEK1/2 overcomes resistance to aPD-1 blockade in pancreatic ductal adenocarcinoma through modulation of NETosis in tumor-associated neutrophils". En Abstracts: AACR Virtual Special Conference: Tumor Immunology and Immunotherapy; October 5-6, 2021. American Association for Cancer Research, 2022. http://dx.doi.org/10.1158/2326-6074.tumimm21-pr10.
Texto completoPerobelli, Suelen Martins, Ana Carolina Terra Mercadante, Triciana Gonçalves-Silva, Rômulo Galvani, Antônio Pereira-Neves, Marlene Benchimol, Alberto Nobrega y Adriana Bonomo. "Abstract B39: Neutrophils G-CSF stimulated promotes specific protection against graft vs. host disease and keeps the graft vs. leukemia effect". En Abstracts: AACR Special Conference: Tumor Immunology and Immunotherapy: A New Chapter; December 1-4, 2014; Orlando, FL. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/2326-6074.tumimm14-b39.
Texto completo