Artículos de revistas sobre el tema "IMMUNOESCAPE"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 43 mejores artículos de revistas para su investigación sobre el tema "IMMUNOESCAPE".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Concha-Benavente, Fernando, Raghvendra M. Srivastava, Soldano Ferrone y Robert L. Ferris. "EGFR-mediated tumor immunoescape". OncoImmunology 2, n.º 12 (diciembre de 2013): e27215. http://dx.doi.org/10.4161/onci.27215.
Texto completoQUESNEL, BRUNO. "Tumor dormancy and immunoescape". APMIS 116, n.º 7-8 (julio de 2008): 685–94. http://dx.doi.org/10.1111/j.1600-0463.2008.01163.x.
Texto completoMazzolini, Guillermo. "Immunotherapy and immunoescape in colorectal cancer". World Journal of Gastroenterology 13, n.º 44 (2007): 5822. http://dx.doi.org/10.3748/wjg.v13.i44.5822.
Texto completoVan hede, Dorien, Inge Langers, Philippe Delvenne y Nathalie Jacobs. "Origin and immunoescape of uterine cervical cancer". La Presse Médicale 43, n.º 12 (diciembre de 2014): e413-e421. http://dx.doi.org/10.1016/j.lpm.2014.09.005.
Texto completoSauleda, Jaume, Francisco Javier Verdú, Sergio Scrimini, Ernest Sala y Jaume Pons. "Immunoescape the link between emphysema and lung cancer?" Journal of Thoracic Disease 11, S3 (marzo de 2019): S329—S330. http://dx.doi.org/10.21037/jtd.2018.12.133.
Texto completoTakasu, Chie, Shoko Yamashita, Yuji Morine, Kozo Yoshikawa, Takuya Tokunaga, Masaaki Nishi, Hideya Kashihara, Toshiaki Yoshimoto y Mitsuo Shimada. "The role of the immunoescape in colorectal cancer liver metastasis". PLOS ONE 16, n.º 11 (19 de noviembre de 2021): e0259940. http://dx.doi.org/10.1371/journal.pone.0259940.
Texto completodeCampos-Lima, Pedro-Otavio, Jelena Levitskaya, Teresa Frisan y Maria G. Masucci. "Strategies of immunoescape in Epstein-Barr virus persistence and pathogenesis". Seminars in Virology 7, n.º 1 (febrero de 1996): 75–82. http://dx.doi.org/10.1006/smvy.1996.0009.
Texto completoYaguchi, Tomonori, Hidetoshi Sumimoto, Chie Kudo-Saito, Nobuo Tsukamoto, Ryo Ueda, Tomoko Iwata-Kajihara, Hiroshi Nishio, Naoshi Kawamura y Yutaka Kawakami. "The mechanisms of cancer immunoescape and development of overcoming strategies". International Journal of Hematology 93, n.º 3 (marzo de 2011): 294–300. http://dx.doi.org/10.1007/s12185-011-0799-6.
Texto completoGhiringhelli, François, Mélanie Bruchard, Fanny Chalmin y Cédric Rébé. "Production of Adenosine by Ectonucleotidases: A Key Factor in Tumor Immunoescape". Journal of Biomedicine and Biotechnology 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/473712.
Texto completoWu, Lei, Yanquan Xu, Huakan Zhao, Yu Zhou, Yu Chen, Shuai Yang, Juan Lei et al. "FcγRIIB potentiates differentiation of myeloid-derived suppressor cells to mediate tumor immunoescape". Theranostics 12, n.º 2 (2022): 842–58. http://dx.doi.org/10.7150/thno.66575.
Texto completoOgino, Takeshi, Shigetaka Moriai, Yoshiya Ishida, Hideyuki Ishii, Akihiro Katayama, Naoyuki Miyokawa, Yasuaki Harabuchi y Soldano Ferrone. "Association of immunoescape mechanisms with Epstein-Barr virus infection in nasopharyngeal carcinoma". International Journal of Cancer 120, n.º 11 (2007): 2401–10. http://dx.doi.org/10.1002/ijc.22334.
Texto completoFerris, Robert L., Elizabeth M. Jaffee y Soldano Ferrone. "Tumor Antigen–Targeted, Monoclonal Antibody–Based Immunotherapy: Clinical Response, Cellular Immunity, and Immunoescape". Journal of Clinical Oncology 28, n.º 28 (1 de octubre de 2010): 4390–99. http://dx.doi.org/10.1200/jco.2009.27.6360.
Texto completoTirapu, Iñigo, Eduardo Huarte, Cristiana Guiducci, Ainhoa Arina, Mikel Zaratiegui, Oihana Murillo, Alvaro Gonzalez et al. "Low Surface Expression of B7-1 (CD80) Is an Immunoescape Mechanism of Colon Carcinoma". Cancer Research 66, n.º 4 (15 de febrero de 2006): 2442–50. http://dx.doi.org/10.1158/0008-5472.can-05-1681.
Texto completoRomano, Veronica, Immacolata Belviso, Alessandro Venuta, Maria Rosaria Ruocco, Stefania Masone, Federica Aliotta, Giuseppe Fiume, Stefania Montagnani, Angelica Avagliano y Alessandro Arcucci. "Influence of Tumor Microenvironment and Fibroblast Population Plasticity on Melanoma Growth, Therapy Resistance and Immunoescape". International Journal of Molecular Sciences 22, n.º 10 (17 de mayo de 2021): 5283. http://dx.doi.org/10.3390/ijms22105283.
Texto completoGabriele, Caterina, Licia E. Prestagiacomo, Giovanni Cuda y Marco Gaspari. "Mass Spectrometry-Based Glycoproteomics and Prostate Cancer". International Journal of Molecular Sciences 22, n.º 10 (14 de mayo de 2021): 5222. http://dx.doi.org/10.3390/ijms22105222.
Texto completoIwami, Shingo, Hiroshi Haeno y Franziska Michor. "A Race between Tumor Immunoescape and Genome Maintenance Selects for Optimum Levels of (epi)genetic Instability". PLoS Computational Biology 8, n.º 2 (16 de febrero de 2012): e1002370. http://dx.doi.org/10.1371/journal.pcbi.1002370.
Texto completoRidolfi, Ruggero, Massimo Guidoboni y Laura Ridolfi. "Cancer immunoediting and dioxin-activating aryl hydrocarbon receptor: a missing link in the shift toward tumor immunoescape?" Journal of Nucleic Acids Investigation 1, n.º 1 (19 de mayo de 2010): 6. http://dx.doi.org/10.4081/jnai.2010.1724.
Texto completoGevorkian, Jonathan, Hein W. Verspaget, Daniel W. Hommes, Lin Chang, Charalabos Pothoulakis y Stavroula Baritaki. "Mo1872 Corticotropin-Releasing Hormone Receptor 2 (CRHR2) Inhibits Colorectal Cancer Immunoescape Through Regulation of Fas/FasL Signaling". Gastroenterology 148, n.º 4 (abril de 2015): S—732. http://dx.doi.org/10.1016/s0016-5085(15)32501-4.
Texto completoCheng, An Ning, Li-Chun Cheng, Cheng-Liang Kuo, Yu Kang Lo, Han-Yu Chou, Chung-Hsing Chen, Yi-Hao Wang, Tsung-Hsien Chuang, Shih-Jung Cheng y Alan Yueh-Luen Lee. "Mitochondrial Lon-induced mtDNA leakage contributes to PD-L1–mediated immunoescape via STING-IFN signaling and extracellular vesicles". Journal for ImmunoTherapy of Cancer 8, n.º 2 (diciembre de 2020): e001372. http://dx.doi.org/10.1136/jitc-2020-001372.
Texto completoChimal-Ramírez, G. K., N. A. Espinoza-Sánchez y E. M. Fuentes-Pananá. "Protumor Activities of the Immune Response: Insights in the Mechanisms of Immunological Shift, Oncotraining, and Oncopromotion". Journal of Oncology 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/835956.
Texto completoLiapis, Ioannis y Stavroula Baritaki. "COVID-19 vs. Cancer Immunosurveillance: A Game of Thrones within an Inflamed Microenviroment". Cancers 14, n.º 17 (5 de septiembre de 2022): 4330. http://dx.doi.org/10.3390/cancers14174330.
Texto completoTorretta, Enrica, Micaela Garziano, Mariacristina Poliseno, Daniele Capitanio, Mara Biasin, Teresa Antonia Santantonio, Mario Clerici, Sergio Lo Caputo, Daria Trabattoni y Cecilia Gelfi. "Severity of COVID-19 Patients Predicted by Serum Sphingolipids Signature". International Journal of Molecular Sciences 22, n.º 19 (22 de septiembre de 2021): 10198. http://dx.doi.org/10.3390/ijms221910198.
Texto completoYoulin, Kuang, He Weiyang, Liang Simin y Gou Xin. "Prostaglandin E2 Inhibits Prostate Cancer Progression by Countervailing Tumor Microenvironment-Induced Impairment of Dendritic Cell Migration through LXRα/CCR7 Pathway". Journal of Immunology Research 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/5808962.
Texto completoKovar, Marek, Jakub Tomala, Helena Chmelova, Lubomir Kovar, Tomas Mrkvan, Radka Joskova, Zuzana Zakostelska et al. "Overcoming Immunoescape Mechanisms of BCL1 Leukemia and Induction of CD8+ T-Cell–Mediated BCL1-Specific Resistance in Mice Cured by Targeted Polymer-Bound Doxorubicin". Cancer Research 68, n.º 23 (1 de diciembre de 2008): 9875–83. http://dx.doi.org/10.1158/0008-5472.can-08-1979.
Texto completoPorcellato, Ilaria, Chiara Brachelente, Livia De Paolis, Laura Menchetti, Serenella Silvestri, Monica Sforna, Gaia Vichi, Selina Iussich y Luca Mechelli. "FoxP3 and IDO in Canine Melanocytic Tumors". Veterinary Pathology 56, n.º 2 (31 de octubre de 2018): 189–99. http://dx.doi.org/10.1177/0300985818808530.
Texto completoFedders, Henning, Ameera Alsadeq, Britt-Sabina Petersen, Christian Kellner, Matthias Peipp, Thomas Valerius, Robert Haesler et al. "Analyses of a Pair of Concordant Twins with Infant ALL and Discordant Clinical Outcome Reveals Immunoescape As a Mechanism of Disease Persistence in MLL-Rearranged Leukemia". Blood 124, n.º 21 (6 de diciembre de 2014): 3791. http://dx.doi.org/10.1182/blood.v124.21.3791.3791.
Texto completoGorain, Bapi, Hira Choudhury, Gan Sook Yee y Subrat Kumar Bhattamisra. "Adenosine Receptors as Novel Targets for the Treatment of Various Cancers". Current Pharmaceutical Design 25, n.º 26 (9 de octubre de 2019): 2828–41. http://dx.doi.org/10.2174/1381612825666190716102037.
Texto completoTsoukalas, Nikolaos, Ioannis Kostakis, Spiros Siakavellas, Maria Tolia, Aristoula Papakostidi, Andreas Karameris, Alexandros Tzovaras et al. "The value of RCAS1 as a potential biomarker in non-small cell lung cancers." Journal of Clinical Oncology 30, n.º 15_suppl (20 de mayo de 2012): e21098-e21098. http://dx.doi.org/10.1200/jco.2012.30.15_suppl.e21098.
Texto completoOrtego, Ignacio, Angel María Vizcay, Susana De La Cruz, Belén Pérez-Solans, Sandra Rubio, Javier Blanco, Miguel A. Idoate et al. "Impact of dendritic cell vaccines added to neoadjuvant CT on pathological complete responses in early breast cancer patients according to PD-L1 expression." Journal of Clinical Oncology 39, n.º 15_suppl (20 de mayo de 2021): 585. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.585.
Texto completoGuéry, Thomas, Christophe Roumier, Céline Berthon, Pascale Lepelley, Aline Renneville, Olivier Nibourel, Florent Dumezy et al. "The B7-H3 Protein In Acute Myeloid Leukemia". Blood 122, n.º 21 (15 de noviembre de 2013): 2620. http://dx.doi.org/10.1182/blood.v122.21.2620.2620.
Texto completoRamsay, Alan G., Andrew J. Clear, Alexander Davenport, Rewas Fatah y John G. Gribben. "Chronic Lymphocytic Leukemia Cells Co-Opt CD200, CD270, CD274 and CD276 to Induce Impaired Actin Polarization At the T Cell Immune Synapse". Blood 118, n.º 21 (18 de noviembre de 2011): 802. http://dx.doi.org/10.1182/blood.v118.21.802.802.
Texto completoHuang, Bo y Xuetao Cao. "Metabolically targeting immunosuppression and immunoescape for future cancer immunotherapy: a narrative review". Holistic Integrative Oncology 1, n.º 1 (4 de noviembre de 2022). http://dx.doi.org/10.1007/s44178-022-00018-5.
Texto completoKresno, Siti Boedina. "Cancer Immunology: From Immunosurveillance to Immunoescape". Indonesian Journal of Cancer 2, n.º 1 (31 de marzo de 2008). http://dx.doi.org/10.33371/ijoc.v2i1.33.
Texto completoConcha-Benavente, Fernando y Robert L. Ferris. "Reversing EGFR Mediated Immunoescape by Targeted Monoclonal Antibody Therapy". Frontiers in Pharmacology 8 (30 de mayo de 2017). http://dx.doi.org/10.3389/fphar.2017.00332.
Texto completoWang, Yunfei, Kaikai Yi, Xing Liu, Yanli Tan, Weili Jin, Yansheng Li, Junhu Zhou, Hongjun Wang y Chunsheng Kang. "HOTAIR Up-Regulation Activates NF-κB to Induce Immunoescape in Gliomas". Frontiers in Immunology 12 (23 de noviembre de 2021). http://dx.doi.org/10.3389/fimmu.2021.785463.
Texto completoPorcellato, Ilaria, Chiara Brachelente, Katia Cappelli, Laura Menchetti, Serenella Silvestri, Monica Sforna, Samanta Mecocci, Selina Iussich, Leonardo Leonardi y Luca Mechelli. "FoxP3, CTLA-4, and IDO in Canine Melanocytic Tumors". Veterinary Pathology, 6 de octubre de 2020, 030098582096013. http://dx.doi.org/10.1177/0300985820960131.
Texto completoKuo, Cheng-Liang, Ananth Ponneri Babuharisankar, Ying-Chen Lin, Hui-Wen Lien, Yu Kang Lo, Han-Yu Chou, Vidhya Tangeda, Li-Chun Cheng, An Ning Cheng y Alan Yueh-Luen Lee. "Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend?" Journal of Biomedical Science 29, n.º 1 (26 de septiembre de 2022). http://dx.doi.org/10.1186/s12929-022-00859-2.
Texto completoLei, Xinyuan, Hsinyu Lin, Jieqi Wang, Zhanpeng Ou, Yi Ruan, Ananthan Sadagopan, Weixiong Chen et al. "Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression". Nature Communications 13, n.º 1 (6 de julio de 2022). http://dx.doi.org/10.1038/s41467-022-31417-x.
Texto completoPan, Jinghua, Yiting Qiao, Congcong Chen, Hongjing Zang, Xiaojing Zhang, Feng Qi, Cunjie Chang et al. "USP5 facilitates non-small cell lung cancer progression through stabilization of PD-L1". Cell Death & Disease 12, n.º 11 (noviembre de 2021). http://dx.doi.org/10.1038/s41419-021-04356-6.
Texto completoBraumüller, Heidi, Bernhard Mauerer, Christopher Berlin, Dorothea Plundrich, Patrick Marbach, Pierre Cauchy, Claudia Laessle, Esther Biesel, Philipp Anton Holzner y Rebecca Kesselring. "Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment". Frontiers in Immunology 13 (30 de junio de 2022). http://dx.doi.org/10.3389/fimmu.2022.908449.
Texto completoBogéa, Gabriela Muller Reche, Amandda Évelin Silva-Carvalho, Luma Dayane de Carvalho Filiú-Braga, Francisco de Assis Rocha Neves y Felipe Saldanha-Araujo. "The Inflammatory Status of Soluble Microenvironment Influences the Capacity of Melanoma Cells to Control T-Cell Responses". Frontiers in Oncology 12 (28 de marzo de 2022). http://dx.doi.org/10.3389/fonc.2022.858425.
Texto completoAlsadeq, A., H. Fedders, BS Petersen, C. Kellner, M. Peipp, M. Bulduk, T. Valerius et al. "A Case of Concordant Twins with Infant ALL and Discordant Clinical Outcome – Part II: highlights on an immunoescape phenotype as a potential mechanism of disease persistence". Klinische Pädiatrie 227, n.º 03 (27 de julio de 2015). http://dx.doi.org/10.1055/s-0035-1550250.
Texto completoMoyano, Ana, Oscar Blanch-Lombarte, Laura Tarancon-Diez, Nuria Pedreño-Lopez, Miguel Arenas, Tamara Alvaro, Concepción Casado et al. "Immunoescape of HIV-1 in Env-EL9 CD8 + T cell response restricted by HLA-B*14:02 in a Non progressor who lost twenty-seven years of HIV-1 control". Retrovirology 19, n.º 1 (26 de marzo de 2022). http://dx.doi.org/10.1186/s12977-022-00591-7.
Texto completo