Artículos de revistas sobre el tema "Immunity control"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Immunity control.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Immunity control".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Bendelac, Albert y Douglas T. Fearon. "Innate immunity Innate pathways that control acquired immunity". Current Opinion in Immunology 9, n.º 1 (febrero de 1997): 1–3. http://dx.doi.org/10.1016/s0952-7915(97)80151-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Busslinger, M. y A. Tarakhovsky. "Epigenetic Control of Immunity". Cold Spring Harbor Perspectives in Biology 6, n.º 6 (1 de junio de 2014): a019307. http://dx.doi.org/10.1101/cshperspect.a019307.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Busslinger, M. y A. Tarakhovsky. "Epigenetic Control of Immunity". Cold Spring Harbor Perspectives in Biology 6, n.º 7 (1 de julio de 2014): a024174. http://dx.doi.org/10.1101/cshperspect.a024174.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tracey, Kevin J. "Reflex control of immunity". Nature Reviews Immunology 9, n.º 6 (junio de 2009): 418–28. http://dx.doi.org/10.1038/nri2566.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gamboa, Lena, Ali H. Zamat y Gabriel A. Kwong. "Synthetic immunity by remote control". Theranostics 10, n.º 8 (2020): 3652–67. http://dx.doi.org/10.7150/thno.41305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

ALVAREZ, MARÍA E., FLORENCIA NOTA y DAMIÁN A. CAMBIAGNO. "Epigenetic control of plant immunity". Molecular Plant Pathology 11, n.º 4 (1 de junio de 2010): 563–76. http://dx.doi.org/10.1111/j.1364-3703.2010.00621.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chen, Huihui, Xiaohan Ning y Zhengfan Jiang. "Caspases control antiviral innate immunity". Cellular & Molecular Immunology 14, n.º 9 (10 de julio de 2017): 736–47. http://dx.doi.org/10.1038/cmi.2017.44.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bachère, Evelyne. "Shrimp immunity and disease control". Aquaculture 191, n.º 1-3 (noviembre de 2000): 3–11. http://dx.doi.org/10.1016/s0044-8486(00)00413-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shanker, Anil. "Adaptive control of innate immunity". Immunology Letters 131, n.º 2 (julio de 2010): 107–12. http://dx.doi.org/10.1016/j.imlet.2010.04.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kiberstis, P. A. "Oncogene control of antitumor immunity". Science 352, n.º 6282 (7 de abril de 2016): 183. http://dx.doi.org/10.1126/science.352.6282.183-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fric, Jan, Teresa Zelante, Alicia Y. W. Wong, Alexandra Mertes, Hong-Bing Yu y Paola Ricciardi-Castagnoli. "NFAT control of innate immunity". Blood 120, n.º 7 (16 de agosto de 2012): 1380–89. http://dx.doi.org/10.1182/blood-2012-02-404475.

Texto completo
Resumen
Abstract The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway mediates multiple adaptive T-cell functions, but recent studies have shown that calcineurin/NFAT signaling also contributes to innate immunity and regulates the homeostasis of innate cells. Myeloid cells, including granulocytes and dendritic cells, can promote inflammation, regulate adaptive immunity, and are essential mediators of early responses to pathogens. Microbial ligation of pattern-recognition receptors, such as TLR4, CD14, and dectin 1, is now known to induce the activation of calcineurin/NFAT signaling in myeloid cells, a finding that has provided new insights into the molecular pathways that regulate host protection. Inhibitors of calcineurin/NFAT binding, such as cyclosporine A and FK506, are broadly used in organ transplantation and can act as potent immunosuppressive drugs in a variety of different disorders. There is increasing evidence that these agents influence innate responses as well as inhibiting adaptive T-cell functions. This review focuses on the role of calcineurin/NFAT signaling in myeloid cells, which may contribute to the various unexplained effects of immunosuppressive drugs already being used in the clinic.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Pouikli, Andromachi y Christian Frezza. "Metabolic control of antitumor immunity". Science 381, n.º 6664 (22 de septiembre de 2023): 1287–88. http://dx.doi.org/10.1126/science.adk1785.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Akira, Shizuo y Kazuhiko Maeda. "Control of RNA Stability in Immunity". Annual Review of Immunology 39, n.º 1 (26 de abril de 2021): 481–509. http://dx.doi.org/10.1146/annurev-immunol-101819-075147.

Texto completo
Resumen
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3′ untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3′ UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Ansaldo, Eduard, Taylor K. Farley y Yasmine Belkaid. "Control of Immunity by the Microbiota". Annual Review of Immunology 39, n.º 1 (26 de abril de 2021): 449–79. http://dx.doi.org/10.1146/annurev-immunol-093019-112348.

Texto completo
Resumen
The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system–microbiota interactions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Collins, Nicholas y Yasmine Belkaid. "Control of immunity via nutritional interventions". Immunity 55, n.º 2 (febrero de 2022): 210–23. http://dx.doi.org/10.1016/j.immuni.2022.01.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Machado, João Paulo B., Iara P. Calil, Anésia A. Santos y Elizabeth P. B. Fontes. "Translational control in plant antiviral immunity". Genetics and Molecular Biology 40, n.º 1 suppl 1 (13 de febrero de 2017): 292–304. http://dx.doi.org/10.1590/1678-4685-gmb-2016-0092.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Harjes, Ulrike. "Germline control of anti-tumour immunity". Nature Reviews Cancer 20, n.º 8 (17 de junio de 2020): 414. http://dx.doi.org/10.1038/s41568-020-0282-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Lau, Henry Y. K., Vicky W. K. Wong y Ivan S. K. Lee. "Immunity-based autonomous guided vehicles control". Applied Soft Computing 7, n.º 1 (enero de 2007): 41–57. http://dx.doi.org/10.1016/j.asoc.2005.02.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Brave, Martina, Dana J. Lukin y Sridhar Mani. "Microbial control of intestinal innate immunity". Oncotarget 6, n.º 24 (3 de julio de 2015): 19962–63. http://dx.doi.org/10.18632/oncotarget.4780.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mehta, Manan M., Samuel E. Weinberg y Navdeep S. Chandel. "Mitochondrial control of immunity: beyond ATP". Nature Reviews Immunology 17, n.º 10 (3 de julio de 2017): 608–20. http://dx.doi.org/10.1038/nri.2017.66.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Gray-Owen, Scott D. y Richard S. Blumberg. "CEACAM1: contact-dependent control of immunity". Nature Reviews Immunology 6, n.º 6 (junio de 2006): 433–46. http://dx.doi.org/10.1038/nri1864.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Pelgrom, Leonard R. y Bart Everts. "Metabolic control of type 2 immunity". European Journal of Immunology 47, n.º 8 (14 de julio de 2017): 1266–75. http://dx.doi.org/10.1002/eji.201646728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Jerison, Elizabeth. "Dynamical control of immunity and inflammation". Biophysical Journal 123, n.º 3 (febrero de 2024): 309a. http://dx.doi.org/10.1016/j.bpj.2023.11.1908.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Jin, Hyo Sun, Hyun-Woo Suh, Seong-Jun Kim y Eun-Kyeong Jo. "Mitochondrial Control of Innate Immunity and Inflammation". Immune Network 17, n.º 2 (2017): 77. http://dx.doi.org/10.4110/in.2017.17.2.77.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Banchereau, Jacques y Ralph M. Steinman. "Dendritic cells and the control of immunity". Nature 392, n.º 6673 (marzo de 1998): 245–52. http://dx.doi.org/10.1038/32588.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lau, H. Y. K. y V. W. K. Wong. "An immunity-based distributed multiagent-control framework". IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 36, n.º 1 (enero de 2006): 91–108. http://dx.doi.org/10.1109/tsmca.2005.859103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Moehlman, Andrew T. y Richard J. Youle. "Mitochondrial Quality Control and Restraining Innate Immunity". Annual Review of Cell and Developmental Biology 36, n.º 1 (6 de octubre de 2020): 265–89. http://dx.doi.org/10.1146/annurev-cellbio-021820-101354.

Texto completo
Resumen
Maintaining mitochondrial health is essential for the survival and function of eukaryotic organisms. Misfunctioning mitochondria activate stress-responsive pathways to restore mitochondrial network homeostasis, remove damaged or toxic proteins, and eliminate damaged organelles via selective autophagy of mitochondria, a process termed mitophagy. Failure of these quality control pathways is implicated in the pathogenesis of Parkinson's disease and other neurodegenerative diseases. Impairment of mitochondrial quality control has been demonstrated to activate innate immune pathways, including inflammasome-mediated signaling and the antiviral cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)–regulated interferon response. Immune system malfunction is a common hallmark in many neurodegenerative diseases; however, whether inflammation suppresses or exacerbates disease pathology is still unclear. The goal of this review is to provide a historical overview of the field, describe mechanisms of mitochondrial quality control, and highlight recent advances on the emerging role of mitochondria in innate immunity and inflammation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Park, Eun Jeong, Motomu Shimaoka y Hiroshi Kiyono. "MicroRNA-mediated dynamic control of mucosal immunity". International Immunology 29, n.º 4 (1 de abril de 2017): 157–63. http://dx.doi.org/10.1093/intimm/dxx019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Zhao, Ende, Huanbin Xu, Lin Wang, Ilona Kryczek, Ke Wu, Yu Hu, Guobin Wang y Weiping Zou. "Bone marrow and the control of immunity". Cellular & Molecular Immunology 9, n.º 1 (24 de octubre de 2011): 11–19. http://dx.doi.org/10.1038/cmi.2011.47.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Ottenhoff, Tom H. M., Frank A. W. Verreck, Marieke A. Hoeve y Esther van de Vosse. "Control of human host immunity to mycobacteria". Tuberculosis 85, n.º 1-2 (enero de 2005): 53–64. http://dx.doi.org/10.1016/j.tube.2004.09.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Quintana, Francisco J. y David H. Sherr. "Aryl Hydrocarbon Receptor Control of Adaptive Immunity". Pharmacological Reviews 65, n.º 4 (1 de agosto de 2013): 1148–61. http://dx.doi.org/10.1124/pr.113.007823.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Lau, Henry Y. K. y Vicky W. K. Wong. "An immunity approach to strategic behavioral control". Engineering Applications of Artificial Intelligence 20, n.º 3 (abril de 2007): 289–306. http://dx.doi.org/10.1016/j.engappai.2006.06.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Liu, Juan, Cheng Qian y Xuetao Cao. "Post-Translational Modification Control of Innate Immunity". Immunity 45, n.º 1 (julio de 2016): 15–30. http://dx.doi.org/10.1016/j.immuni.2016.06.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Wakelin, D. "Genetic control of immunity to helminth infections". Parasitology Today 1, n.º 1 (julio de 1985): 17–23. http://dx.doi.org/10.1016/0169-4758(85)90101-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Potter, Tim y Kat Baxter-Smith. "Modernising BRD control". Livestock 25, n.º 6 (2 de noviembre de 2020): 292. http://dx.doi.org/10.12968/live.2020.25.6.292.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Anandasabapathy, Niroshana, Rachel Feder, Shamim Mollah, Sze-Wah Tse, Maria Paula Longhi, Saurabh Mehandru, Ines Matos et al. "Classical Flt3L-dependent dendritic cells control immunity to protein vaccine". Journal of Experimental Medicine 211, n.º 9 (18 de agosto de 2014): 1875–91. http://dx.doi.org/10.1084/jem.20131397.

Texto completo
Resumen
DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin+ DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Polushin, P. A., O. R. Nikitin y I. R. Dubov. "Quasioptimal control in diversed signal transmission". IOP Conference Series: Materials Science and Engineering 1227, n.º 1 (1 de febrero de 2022): 012003. http://dx.doi.org/10.1088/1757-899x/1227/1/012003.

Texto completo
Resumen
Abstract To increase the noise immunity of signal transmission, diversity methods are now widely used, consisting in obtaining and combining several copies of the transmitted signal. In this case, it is possible to perform a combination either before the detection procedure or after it. If you do not take into account the possible use of non-linear types of modulation, then the pre-detector combination always has advantages over the post-detector combination. However, taking into account the nonlinear properties of the transmitted signals, new possibilities appear for increasing the noise immunity in combination and simplifying the processing. In the case of using analog signals, in particular frequency modulation, at certain points in time, the pre-detection combination can lose to the post-detection combination. At the same time, by combining pre-detector and post-detector combining circuits, it is possible to lower the threshold level during demodulation and increase noise immunity. In the case of using digital modes of modulation, it is possible to process only the signals after demodulation without reducing the noise immunity and to eliminate the need for preliminary phasing of the diversity signals before detection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Watts, Tania H. "Stepping up Th1 immunity to control phagosomal bacteria". Trends in Immunology 42, n.º 6 (junio de 2021): 461–63. http://dx.doi.org/10.1016/j.it.2021.04.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Schlosser, Thomas P. "Sovereign Immunity: Should the Sovereign Control the Purse?" American Indian Law Review 24, n.º 2 (1999): 309. http://dx.doi.org/10.2307/20070637.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Carter, Philip B. "Immunity to Parasites: How Animals Control Parasite Infections". American Journal of Tropical Medicine and Hygiene 34, n.º 4 (1 de julio de 1985): 825. http://dx.doi.org/10.4269/ajtmh.1985.34.4.tm0340040825a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

BACON, L. D. y R. R. DIETERT. "Genetic Control of Cell-Mediated Immunity in Chickens". Poultry Science 70, n.º 5 (mayo de 1991): 1187–99. http://dx.doi.org/10.3382/ps.0701187.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Befus, A. Dean, Derek Wakelin y Edward Arnold. "Immunity to Parasites: How Animals Control Parasite Infections". Journal of Parasitology 71, n.º 3 (junio de 1985): 364. http://dx.doi.org/10.2307/3282019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Schiering, Chris, Emma Wincent, Amina Metidji, Andrea Iseppon, Ying Li, Alexandre J. Potocnik, Sara Omenetti et al. "Feedback control of AHR signalling regulates intestinal immunity". Nature 542, n.º 7640 (febrero de 2017): 242–45. http://dx.doi.org/10.1038/nature21080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Asaturova, A. V., A. V. Tregubova y D. V. Shushkanova. "Inhibition of immunity control points in ovarian cancer". CLINICAL AND EXPERIMENTAL MORPHOLOGY 9, n.º 1 (2020): 11–19. http://dx.doi.org/10.31088/cem2020.9.1.11-19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Grant, Audrey V., Christian Roussilhon, Richard Paul y Anavaj Sakuntabhai. "The genetic control of immunity to Plasmodium infection". BMC Immunology 16, n.º 1 (2015): 14. http://dx.doi.org/10.1186/s12865-015-0078-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Naik, S., N. Bouladoux, C. Wilhelm, M. J. Molloy, R. Salcedo, W. Kastenmuller, C. Deming et al. "Compartmentalized Control of Skin Immunity by Resident Commensals". Science 337, n.º 6098 (26 de julio de 2012): 1115–19. http://dx.doi.org/10.1126/science.1225152.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Palm, Noah W. y Ruslan Medzhitov. "Pattern recognition receptors and control of adaptive immunity". Immunological Reviews 227, n.º 1 (enero de 2009): 221–33. http://dx.doi.org/10.1111/j.1600-065x.2008.00731.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Secher, Thomas, Olivier Gaillot, Bernhard Ryffel y Mathias Chamaillard. "Remote Control of Intestinal Tumorigenesis by Innate Immunity". Cancer Research 70, n.º 5 (28 de febrero de 2010): 1749–52. http://dx.doi.org/10.1158/0008-5472.can-09-3401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Huang, Lei y Andrew L. Mellor. "Metabolic control of tumour progression and antitumour immunity". Current Opinion in Oncology 26, n.º 1 (enero de 2014): 92–99. http://dx.doi.org/10.1097/cco.0000000000000035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wang, Tian. "Flavivirus Immunity in Disease Control and Viral Pathogenesis". Viral Immunology 33, n.º 1 (1 de febrero de 2020): 1–2. http://dx.doi.org/10.1089/vim.2019.29047.tjt.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía