Literatura académica sobre el tema "Immune checkpoint blocker"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Immune checkpoint blocker".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Immune checkpoint blocker"
Zhang, Yuhan, Changming Fang, Rongsheng E. Wang, Ying Wang, Hui Guo, Chao Guo, Lijun Zhao et al. "A tumor-targeted immune checkpoint blocker". Proceedings of the National Academy of Sciences 116, n.º 32 (22 de julio de 2019): 15889–94. http://dx.doi.org/10.1073/pnas.1905646116.
Texto completoGalluzzi, Lorenzo y Guido Kroemer. "Novel immune checkpoint blocker to treat Merkel cell carcinoma". OncoImmunology 6, n.º 6 (20 de abril de 2017): e1315496. http://dx.doi.org/10.1080/2162402x.2017.1315496.
Texto completoWang, Feihu, Dongqing Xu, Hao Su, Weijie Zhang, Xuanrong Sun, Maya K. Monroe, Rami W. Chakroun et al. "Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker–based immunotherapy". Science Advances 6, n.º 18 (29 de abril de 2020): eaaz8985. http://dx.doi.org/10.1126/sciadv.aaz8985.
Texto completoHassel, Jessica Cecile, Michael Flossdorf, Sonja Hänzelmann, Julia Winkler, Jasmin Roth, Claudia Lauenstein, Lena Appel et al. "Investigation of the immune infiltrate of melanoma metastases under immune checkpoint inhibition." Journal of Clinical Oncology 35, n.º 15_suppl (20 de mayo de 2017): 9570. http://dx.doi.org/10.1200/jco.2017.35.15_suppl.9570.
Texto completoYuan, Bo, Linlin Miao, Disen Mei, Lingzhi Li, Qiongyan Zhou, Dong Dong, Songting Wang, Xiaoxia Zhu y Suling Xu. "Value of a Signature of Immune-Related Genes in Predicting the Prognosis of Melanoma and Its Responses to Immune Checkpoint Blocker Therapies". Computational and Mathematical Methods in Medicine 2022 (20 de junio de 2022): 1–13. http://dx.doi.org/10.1155/2022/9633416.
Texto completoGalluzzi, Lorenzo, Guido Kroemer y Alexander Eggermont. "Novel immune checkpoint blocker approved for the treatment of advanced melanoma". OncoImmunology 3, n.º 11 (2 de noviembre de 2014): e967147. http://dx.doi.org/10.4161/21624011.2014.967147.
Texto completoShi, Connie R., Tracey S. Otto, Leah L. Thompson, Michael S. Chang, Kerry L. Reynolds y Steven T. Chen. "Methotrexate in the treatment of immune checkpoint blocker-induced bullous pemphigoid". European Journal of Cancer 159 (diciembre de 2021): 34–37. http://dx.doi.org/10.1016/j.ejca.2021.09.032.
Texto completoMakam, Raghavendra, Youssef Rahban, David Gerson y Glenn Stokken. "A CASE OF ACUTE CARDIOMYOPATHY DUE TO IMMUNE CHECKPOINT BLOCKER PEMBROLIZUMAB". Journal of the American College of Cardiology 75, n.º 11 (marzo de 2020): 3100. http://dx.doi.org/10.1016/s0735-1097(20)33727-x.
Texto completoSharma, Munish, Giselle A. Suero-Abreu y Bernard Kim. "A Case of Acute Heart Failure due to Immune Checkpoint Blocker Nivolumab". Cardiology Research 10, n.º 2 (2019): 120–23. http://dx.doi.org/10.14740/cr838.
Texto completoHassel, Jessica C. "Checkpoint blocker induced autoimmunity as an indicator for tumour efficacy in melanoma". British Journal of Cancer 126, n.º 2 (25 de octubre de 2021): 163–64. http://dx.doi.org/10.1038/s41416-021-01390-1.
Texto completoTesis sobre el tema "Immune checkpoint blocker"
Baldini, Capucine. "Clonal hematopoiesis and immunosenescence as a prognostic biomarker for oncological treatments in solid tumors". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL121.
Texto completoCancer is a pathology often associated with aging. Several phenomena related to inflammaging (chronic age-related inflammation) are markers of senescence, such as immunosenescence and clonal hematopoiesis. This chronic inflammation promotes the development of many diseases, such as cardiovascular comorbidities, while reducing the capacity for an efficient immune response with age. Immunosenescence is notably characterized by a decrease in the number and frequency of naïve T lymphocytes in the blood, due to their conversion into memory T lymphocytes following natural exposure to pathogens, autoantigens, and neoantigens. In parallel, thymic involution associated with aging reduces the production of new naïve T lymphocytes throughout life. Chronic viral infections, such as those caused by viruses in the Herpesviridae family, including CMV, also contribute to the increase in terminally differentiated memory T lymphocytes and lymphocyte senescence. Alongside immune senescence, the emergence of clonal hematopoiesis (CH) is observed with aging, influenced by various factors. CH is characterized by the detection of somatic mutations in hematopoietic cells in patients without hematologic disease. These mutations, identified through next-generation sequencing (NGS) in peripheral blood, affect genes associated with conditions such as acute myeloid leukemia or myelodysplastic syndromes (e.g., DNMT3A, TET2, ASXL1). Aging is a major risk factor for CH, with a prevalence of over 10% after the age of 70, and it increases progressively with age. CH is also more frequent in cancer patients, influenced by treatments or environmental factors (such as smoking, radiotherapy, and chemotherapy). However, its prognostic impact in patients with solid tumors remains largely unknown. From a therapeutic perspective, significant progress has been made in solid oncology in recent years with the advent of targeted therapies and immunotherapy. The antitumor approach of immunotherapy is based on a new paradigm: mobilizing the patient’s immune system for therapeutic purposes. Several classes of treatments are under development, with immune checkpoint inhibitors leading the way. These inhibitors are approved in numerous indications, either as monotherapy or in combination. The search for biomarkers has refined the selection of candidate populations. Several predictive and prognostic biomarkers are now available, mainly related to the tumor or its microenvironment. Some biomarkers could also be related to the patient's immune profile. The objective of this thesis is to analyze the impact of clonal hematopoiesis, immunosenescence, and inflammaging on the effectiveness of antitumor treatments in patients with solid cancers
NOCI, V. M. LE. "CANCER THERAPY THROUGH TLR-INDUCED LOCAL INNATE IMMUNITY ACTIVATION AND BLOCK OF IMMUNE CHECKPOINTS OR SUPPRESSIVE CELLS". Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/480559.
Texto completoLiu, Peng. "Mort cellulaire immunogène induite par le crizotinib dans le cancer poumon non à petites cellules". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS148.
Texto completoAccumulating evidence suggests that certain conventional chemotherapies, radiotherapies, as well as targeted therapies mediate their long-term therapeutic success by inducing immunogenic cell death (ICD), which stimulate the release or exposure of danger-associated molecular patterns from or on cancer cells, causing their recognition by the immune system, thus reinstating immunosurveillance. An unbiased screen identified crizotinib as a tyrosine kinase inhibitor that is potent in provoking hallmarks of ICD. In subsequent low-throughput validation experiments, crizotinib promoted Calreticulin exposure, ATP secretion, HMGB1 release, as well as ER stress in both human and murine cancer cells, especially if it is combined with normally non-ICD inducing chemotherapeutics such as cisplatin. ICD induced by the combination of chemotherapy and crizotinib was also observed in non-small cell lung carcinoma (NSCLC) cells lacking activating mutations of the crizotinib targets ALK and ROS1, suggesting an off-target-mediated mode of action. Comparative studies indicated that exclusively the clinically used (R) isoform of crizotinib was efficient in inducing cell death and stimulating ICD hallmarks whereas the (S) enantiomer lacked those characteristics. When combined with cisplatin, crizotinib-killed fibrosarcoma MCA205 cells as well as lung cancer TC-1 cells efficiently vaccinated syngeneic immunocompetent mice against a re-challenge with live cancer cells of the same types. Crizotinib improved the efficacy of chemotherapy with non-ICD inducers (such as cisplatin and mitomycin C) on three distinct (transplantable, carcinogen- or oncogene induced) orthotopic NSCLC models, none of which relied on the activation of ALK or ROS1. Of note these anticancer effects were completely lost if any of the ICD signals was blocked. These anticancer efficacies in different models were linked to an increased T lymphocyte infiltration as a sign of an immune response and were lost if such tumors grew on immunodeficient (nu/nu) mice that are athymic and hence lack thymus-dependent T lymphocytes, or on immunocompetent mice with a neutralization of interferon-. The combination of cisplatin and crizotinib led to an increase in the expression of CTLA-4, PD-1 and PD-L1 in tumors, coupled to a strong sensitization of NSCLC to immunotherapy with antibodies blocking CTLA-4 and PD-1. Hence, a combination of crizotinib, conventional chemotherapy and immune checkpoint blockade may be active against NSCLC, and these data might facilitate the design of clinical trials to evaluated novel combination regiments for the treatment of NSCLC
Lobo, Ana Catarina Sousa. "Immunological effects of photodynamic therapy". Doctoral thesis, 2021. http://hdl.handle.net/10316/95457.
Texto completoPhotodynamic therapy (PDT) relies on the administration of a photosensitizer (PS) that is activated on the target tissue after the irradiation with light of a specific wavelength absorbed by the PS. Redaporfin is a recently developed photosensitizer for PDT that is currently in phase 2 clinical trials (NCT02070432). Redaporfin is a photostable bacteriochlorin with intense infrared absorption, high yield of ROS generation, high phototoxicity, low skin photosensitivity and favorable pharmacokinetics. A vascular protocol of redaporfin-PDT with mice bearing CT26.WT tumors not only destroys the primary tumor but also reduces the development of metastasis, thus suggesting antitumor immunity. This work characterizes the immune response triggered by this vascular-PDT protocol. At different timepoints after tumor irradiation, blood samples were collected, and distinct immune cell populations and cytokines were quantified. Redaporfin-PDT leads to a strong neutrophilia, with systemic increase of IL-6, increased percentage of CD4+ and CD8+ T cells producing IFN-γ or CD69+ and increased CD4+/CD8+ T cell ratio. We also showed that at the tumor bed, T cell tumor infiltration disappeared after PDT but reappeared with a much higher incidence one day later. The depletion of specific immune populations suggested that neutrophils and cytotoxic T cells have a major role in the development of the antitumor immune response elicited by redaporfin-PDT, while helper T cells may just have a supportive role. Regarding this, we hypothesize that the combination of redaporfin-PDT with an immune therapy may potentiate the efficacy of both therapies, namely by increasing the response rates of immunotherapies and strengthening the systemic effects of PDT, especially in difficult tumors to treat. The tumor models were selected taking in consideration that redaporfin-PDT is capable of eliciting immunogenic cell death (ICD) and may be able to enhance the immunogenicity of tumor cells. Melanoma and mammary carcinoma tumors are recognized to be more aggressive and difficult to treat than most mouse tumor models, namely colon carcinoma. The response to redaporfin-PDT was evaluated in mouse mammary carcinoma expressing luciferase (4T1-luc2) and in mouse skin melanoma (B16F10) tumor models, and PDT parameters were optimized to maximize the impact on tumors while minimizing treatment lethality. A significant edema that later progressed to necrosis was observed in both tumor models. However, cures were only achieved with the B16F10 tumor model. Imaging with photoacoustic tomography suggested that the lower content of redaporfin in 4T1 tumors is the main reason for the challenging behavior of this orthotopic 4T1 model. The antitumor effect elicited by PDT is in some cases opposed by the immunosuppressive mechanisms elicited by tumor cells which makes the treatment ineffective. Thus, immunotherapies that have as major goal the alleviation of this immunosuppressive tumor environment are interesting for combination therapies, increasing the efficacy with better antitumoral and antimetastatic effects. We reported a combination of redaporfin-PDT with immunotherapies using CTLA-4 and PD-1 in three different tumor models. Treatment outcomes were evaluated by survival, tumor growth kinetics and, for the carcinoma model, observation of metastasis development by bioluminescent imaging. Furthermore, we evaluated the changes on expression of several immune checkpoint molecules triggered by redaporfin-PDT in vitro. Combination of redaporfin-PDT with CTLA-4 immunotherapy, but not with PD-1, led to a significant improvement of survival and a higher cure rate in the colon carcinoma animal model. However, the same was not achieved with the melanoma and breast carcinoma animal models. Expression of immune checkpoint molecules was induced in tumor cells treated in vitro with redaporfin-PDT. The most notable changes were observed for CD80 and PD-L1. These results demonstrate that the combination of photodynamic therapy with immunotherapy may improve the treatment of malignant diseases that represent a challenge to immunotherapies alone and highlights the fact that a global therapeutic strategy may not be ideal for every tumor model. Combinatorial approaches are not universal and have to be tailored to the specificities of each clinical case.
A terapia fotodinâmica (PDT, do inglês, photodynamic therapy) consiste na administração de um fotossensibilizador (PS, do inglês, photosensitizer) que é ativado no tecido alvo após a irradiação com luz com um comprimento de onda absorvido pelo PS. A redaporfin é um fotossensibilizador desenvolvido recentemente para a PDT e que está atualmente em ensaios clínicos fase 2 (NCT02070432). A redaporfin é uma bacterioclorina fotoestável com intensa absorção no infravermelho próximo, elevado rendimento de formação de espécies reativas de oxigénio (ROS, do inglês, reactive oxygen species), elevada fototoxicidade, baixa fotossensibilidade da pele e uma farmacocinética favorável. A aplicação de um protocolo de PDT vascular com redaporfin em murganhos com tumores de carcinoma do cólon (CT26.WT) não só destrói o tumor primário como também reduz o desenvolvimento de metástases, sugerindo assim o aparecimento de imunidade anti-tumoral. Este trabalho caracteriza a resposta imunitária desencadeada através deste protocolo de PDT vascular. Em tempos pré-determinados após a irradiação do tumor foram feitas colheitas de sangue e foram quantificadas as diferentes populações de células imunes e citocinas envolvidas na resposta imunitária. A PDT com a redaporfin provoca uma forte neutrófilia, um aumento sistémico da IL-6, um aumento da percentagem de células CD4+ e CD8+ T que produtoras de IFN-γ ou CD69+ e um aumento do rácio de células T CD4+/CD8+. Ao nível do leito tumoral, a infiltração de linfócitos T desaparece após a PDT, mas reaparece com muito maior incidência 24 h mais tarde. A depleção de populações de células imunes específicas demonstrou que os neutrófilos e as células T citotóxicas desempenham um papel importante no desenvolvimento da resposta imune anti-tumoral desencadeada pela PDT com redaporfin, enquanto que as células T auxiliares parecem desempenhar apenas um papel de suporte. Tendo isto em consideração, propomos que a combinação da PDT com a redaporfin e a imunoterapia pode potenciar a eficácia de ambos os tratamentos, nomeadamente através do aumento da taxa de resposta às imunoterapias bem como o reforço do efeito sistémico da PDT, especialmente em tumores difíceis de tratar. Os modelos tumorais utilizados nestes estudos foram selecionados tendo em conta que a PDT com a redaporfin é capaz de gerar morte celular imunogénica e aumentar a imunogenicidade das células tumorais tratadas. Os melanomas e carcinomas mamários são reconhecidos por serem bastante mais agressivos e difíceis de tratar do que a maioria dos modelos tumorais de murganho usados, como o carcinoma do cólon. A resposta à PDT com redaporfin foi avaliada em murganhos com modelos tumorais de carcinoma mamário que expressa luciferase (4T1-luc2) e de melanoma da pele (B16F10). Os parâmetros da PDT foram otimizados para maximizar o impacto no tumor primário e minimizar a letalidade do tratamento. Em ambos os modelos foi observado edema que posteriormente evoluiu para necrose, contudo, apenas foram obtidas curas no modelo de melanoma. Recorrendo a tomografia fotoacústica verificou-se que o baixo conteúdo de redaporfin que consegue aceder ao tumor pode ser a principal razão para a falta de eficácia no modelo ortotópico de 4T1. A resposta anti-tumoral desencadeada pela PDT é por vezes neutralizada por mecanismos imunossupressores desencadeados pelas células tumorais que diminuem a eficácia do tratamento. Deste modo, as imunoterapias que têm como função atenuar o ambiente tumoral imunossupressor aparentam ser promissoras em terapias combinatórias que ambicionam aumentar a eficácia dos efeitos anti-tumorais e anti-metastáticos. Neste estudo, reportamos a combinação da PDT com redaporfin e as imunoterapias usando a CTLA-4 e a PD-1 em três modelos tumorais diferentes. Os resultados dos tratamentos foram avaliados através do tempo de sobrevida, da cinética de crescimento tumoral e, para o caso do modelo do carcinoma mamário, do desenvolvimento das metástases analisado através de imagiologia de bioluminescência. Posteriormente, as alterações da expressão de diferentes moléculas dos checkpoints imunitários em células tumorais foram avaliadas após a PDT in vitro. A combinação da PDT com a redaporfin e a imunoterapia com CTLA-4, mas não com a PD-1, originou uma melhoria significativa da sobrevida e um aumento da taxa de curas no modelo de carcinoma do cólon de murganhos. Contudo, o mesmo não se verificou para os modelos de melanoma e de carcinoma mamário. O aumento da expressão de moléculas dos checkpoints imunitários foi induzido de forma significativa nas células tumorais após o tratamento de PDT in vitro. As alterações mais notáveis foram observadas para CD80 e PD-L1. Os resultados sugerem que a combinação de PDT com imunoterapia pode ser eficaz no tratamento de tumores que são um maior desafio para a imunoterapia como tratamento isolado. Isto salienta a ideia de que uma estratégia terapêutica global pode não ser a ideal para todos os modelos tumorais. As estratégias combinatórias não são universais e necessitam de ser adaptadas às especificações de cada caso clínico.
Luzitin S.A.
Capítulos de libros sobre el tema "Immune checkpoint blocker"
Sahip Yesiralioglu, Birsen, Sehmus Ertop, Muzeyyen Aslaner Ak y Hatice Ayag. "Types of Immunotherapy, Mechanism of Action and Side Effects". En Immunotherapy in Human Cancers, 11–24. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053359388.2.
Texto completoAyyildiz, Orhan y Yusuf Hekimoglu. "What Is Immunotherapy and History of Immunotherapy in Cancers". En Immunotherapy in Human Cancers, 1–10. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053359388.1.
Texto completoHarrington, Kevin J., Charleen M. L. Chan Wah Hak, Antonio Rullan y Emmanuel Patin. "DNA Repair Mechanisms as a New Target in Head and Neck Cancer". En Critical Issues in Head and Neck Oncology, 23–35. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23175-9_3.
Texto completoAwad, Robin Maximilian y Karine Breckpot. "Novel technologies for applying immune checkpoint blockers". En International Review of Cell and Molecular Biology. Elsevier, 2023. http://dx.doi.org/10.1016/bs.ircmb.2023.03.003.
Texto completoM. Gordon, Erlinda, Nicole L. Angel, Ted T. Kim, Don A. Brigham, Sant P. Chawla y Frederick L. Hall. "Immune and Cell Cycle Checkpoint Inhibitors for Cancer Immunotherapy". En Advances in Precision Medicine Oncology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96664.
Texto completoHirabayashi, Koichi, Gianpietro Dotti y Barbara Savoldo. "Cancer Immunotherapy in Children". En Oxford Textbook of Cancer in Children, 64–70. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198797210.003.0008.
Texto completoKumar, Mr Santosh. "Immunopharmacology". En Edited Book of Pharmacology-III [According to Latest Syllabus of B. Pharm-VI Semester of Pharmacy Council of India], 160–71. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/nbennurphch18.
Texto completoActas de conferencias sobre el tema "Immune checkpoint blocker"
Sousa Lobo, Ana Catarina, Lígia C. Gomes-da-Silva y Luis G. Arnaut. "Combinatorial approaches with vascular photodynamic therapy with redaporfin and immune checkpoint blockers (Conference Presentation)". En 17th International Photodynamic Association World Congress, editado por Tayyaba Hasan. SPIE, 2019. http://dx.doi.org/10.1117/12.2526034.
Texto completoDay, Chi-Ping, Eva Perez-Guijarro, Rajaa El Meskini, Zoe Weaver Ohler, Maxwell Lee, Howard Yang, Suman Vodnala, Shyam Sharan y Glenn Merlino. "Abstract 2623: Identification of neo-antigens driving melanoma response to immune checkpoint blockers viain vivoscreening". En Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2623.
Texto completoKim, Seoree, Sang-Yeob Kim y Jin Hyoung Kang. "Abstract 5004: A new pattern called Hyperprogression when using Immune checkpoint blockers in real world". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-5004.
Texto completoKim, Seoree, Sang-Yeob Kim y Jin Hyoung Kang. "Abstract 5004: A new pattern called Hyperprogression when using Immune checkpoint blockers in real world". En Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-5004.
Texto completoBessede, Alban, Sylvestre Le Moulec, Jean Philippe Guegan, Isabelle Soubeyran, Florent Peyraud, Christophe Rey y Antoine Italiano. "141 Indoleamine 2,3 dioxygenase expression predicts response to immune checkpoint blockers in advanced non-small cell lung cancer". En SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0141.
Texto completoXu, Jin, Kai Han, Xuehui Huang y James J. Moon. "1227 Oral inulin gel formulation modulates the gut microbiome and improves the safety and efficacy of immune checkpoint blockers". En SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.1227.
Texto completoXu, Jin, Kai Han, Xuehui Huang, Yue He, Alexander Schmidt, Thomas Schmidt y James J. Moon. "1153 Oral inulin gel formulation modulates the gut microbiome and improves the safety and efficacy of immune checkpoint blockers". En SITC 39th Annual Meeting (SITC 2024) Abstracts, A1275. BMJ Publishing Group Ltd, 2024. http://dx.doi.org/10.1136/jitc-2024-sitc2024.1153.
Texto completoSainson, Richard C., Matthew McCourt, Anil Thotakura, Nahida Parveen, Miha Kismac, Gwenoline Borhis, Joana Carvalho et al. "Abstract 2792: The combination of immune checkpoint blockers with the anti-ICOS KY1044 antibody results in a strong tumor response". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2792.
Texto completoBloy, Norma, Aitziber Buqué, Cristina Iribarren, Claudia Galassi, Giulia Petroni, Takahiro Yamazaki, Ai Sato, Silvia Formenti y Lorenzo Galluzzi. "858 Breaking through the resistance of breast cancer to immune checkpoint blockers in a unique mouse model of HR+ disease". En SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0858.
Texto completoDinstag, Gal, Efrat Elis, Doreen S. Ben-Zvi, Kenneth Aldape, Eytan Ruppin, Tuvik Beker, Raanan Berger y Ranit Aharonov. "157 A transcriptomics-based response predictor identifies potential responders among patients with negative standard markers for response to immune checkpoint blockers". En SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0157.
Texto completo