Literatura académica sobre el tema "Image de microscopie"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Image de microscopie".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Image de microscopie"
Kinosita, K., H. Itoh, S. Ishiwata, K. Hirano, T. Nishizaka y T. Hayakawa. "Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium." Journal of Cell Biology 115, n.º 1 (1 de octubre de 1991): 67–73. http://dx.doi.org/10.1083/jcb.115.1.67.
Texto completoBouchon, Patrick y Yannick de Wilde. "Rayonnement thermique infrarouge de nano-antennes plasmoniques individuelles". Photoniques, n.º 105 (noviembre de 2020): 32–36. http://dx.doi.org/10.1051/photon/202010532.
Texto completoBraat, J. "Calcul efficace de l'intensité image en microscopie confocale appliqué à la lecture d'un disque optique". Annales de Physique 24, n.º 3 (1999): 31–42. http://dx.doi.org/10.1051/anphys:199903004.
Texto completoWan, Xinjun y Xuechen Tao. "Design of a Cell Phone Lens-Based Miniature Microscope with Configurable Magnification Ratio". Applied Sciences 11, n.º 8 (9 de abril de 2021): 3392. http://dx.doi.org/10.3390/app11083392.
Texto completoJin, Lingbo, Yubo Tang, Yicheng Wu, Jackson B. Coole, Melody T. Tan, Xuan Zhao, Hawraa Badaoui et al. "Deep learning extended depth-of-field microscope for fast and slide-free histology". Proceedings of the National Academy of Sciences 117, n.º 52 (14 de diciembre de 2020): 33051–60. http://dx.doi.org/10.1073/pnas.2013571117.
Texto completoTetard, Martin, Ross Marchant, Giuseppe Cortese, Yves Gally, Thibault de Garidel-Thoron y Luc Beaufort. "Technical note: A new automated radiolarian image acquisition, stacking, processing, segmentation and identification workflow". Climate of the Past 16, n.º 6 (2 de diciembre de 2020): 2415–29. http://dx.doi.org/10.5194/cp-16-2415-2020.
Texto completoPerrot, J. L., A. Biron, E. Couty, L. Tognetti, C. Couzan, R. Rossi, P. Rubegni y E. Cinotti. "Premiers cas de corrélation parfaite à l’échelle cellulaire entre image de microscopie confocale in vivo et dermatoscopie". Annales de Dermatologie et de Vénéréologie 145, n.º 12 (diciembre de 2018): S186. http://dx.doi.org/10.1016/j.annder.2018.09.261.
Texto completoDavidson, Michael W. "Pioneers in Optics: Joseph Jackson Lister and Maksymilian Pluta". Microscopy Today 19, n.º 3 (28 de abril de 2011): 54–56. http://dx.doi.org/10.1017/s1551929511000277.
Texto completoChen, Xiaodong, Bin Zheng y Hong Liu. "Optical and Digital Microscopic Imaging Techniques and Applications in Pathology". Analytical Cellular Pathology 34, n.º 1-2 (2011): 5–18. http://dx.doi.org/10.1155/2011/150563.
Texto completoJia Renqing, 贾仁庆, 殷高方 Yin Gaofang, 赵南京 Zhao Nanjing, 徐敏 Xu Min, 胡翔 Hu Xiang, 黄朋 Huang Peng, 梁天泓 Liang Tianhong et al. "浮游藻类细胞显微多聚焦图像融合方法". Acta Optica Sinica 43, n.º 12 (2023): 1210001. http://dx.doi.org/10.3788/aos222153.
Texto completoTesis sobre el tema "Image de microscopie"
Toledo, Acosta Bertha Mayela. "Multimodal image registration in 2D and 3D correlative microscopy". Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S054/document.
Texto completoThis thesis is concerned with the definition of an automated registration framework for 2D and 3D correlative microscopy images, in particular for correlative light and electron microscopy (CLEM) images. In recent years, CLEM has become an important and powerful tool in the bioimaging field. By using CLEM, complementary information can be collected from a biological sample. An overlay of the different microscopy images is commonly achieved using techniques involving manual assistance at several steps, which is demanding and time consuming for biologists. To facilitate and disseminate the CLEM process for biologists, the thesis work is focused on creating automatic registration methods that are reliable, easy to use and do not require parameter tuning or complex knowledge. CLEM registration has to deal with many issues due to the differences between electron microscopy and light microscopy images and their acquisition, both in terms of pixel resolution, image size, content, field of view and appearance. We have designed intensity-based methods to align CLEM images in 2D and 3D. They involved a common representation of the LM and EM images using the LoG transform, a pre-alignment step exploiting histogram-based similarities within an exhaustive search, and a fine mutual information-based registration. In addition, we have defined a robust motion model selection method, and a multiscale spot detection method which were exploited in the 2D CLEM registration. Our automated CLEM registration framework was successfully tested on several real 2D and 3D CLEM datasets and the results were validated by biologists, offering an excellent perspective in the usefulness of our methods
Denimal, Emmanuel. "Détection de formes compactes en imagerie : développement de méthodes cumulatives basées sur l'étude des gradients : Applications à l'agroalimentaire". Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK006/document.
Texto completoThe counting cells (Malassez, Thoma ...) are designed to allow the enumeration of cells under a microscope and the determination of their concentration thanks to the calibrated volume of the grid appearing in the microscopic image. Manual counting has major disadvantages: subjectivity, non-repeatability ... There are commercial automatic counting solutions, the disadvantage of which is that a well-controlled environment is required which can’t be obtained in certain studies ( eg glycerol greatly affects the quality of the images ). The objective of the project is therefore twofold: an automated cell count and sufficiently robust to be feasible regardless of the acquisition conditions.In a first step, a method based on the Fourier transform has been developed to detect, characterize and erase the grid of the counting cell. The characteristics of the grid extracted by this method serve to determine an area of interest and its erasure makes it easier to detect the cells to count.To perform the count, the main problem is to obtain a cell detection method robust enough to adapt to the variable acquisition conditions. The methods based on gradient accumulations have been improved by the addition of structures allowing a finer detection of accumulation peaks. The proposed method allows accurate detection of cells and limits the appearance of false positives.The results obtained show that the combination of these two methods makes it possible to obtain a repeatable and representative count of a consensus of manual counts made by operators
Moisan, Frédéric. "Optimisation du contraste image en microscopie optique : application à l'inspection microélectronique". Grenoble 1, 1988. http://tel.archives-ouvertes.fr/tel-00331501.
Texto completoMoisan, Frédéric. "Optimisation du contraste image en microscopie optique application à l'inspection microélectronique /". Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37616602c.
Texto completoMoisan, Frédéric Courtois Bernard. "Optimisation du contraste image en microscopie optique application à l'inspection microélectronique /". S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00331501.
Texto completoJezierska, Anna Maria. "Image restoration in the presence of Poisson-Gaussian noise". Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00906718.
Texto completoLe, Floch Hervé. "Acquisition des images en microscopie electronique a balayage in situ". Toulouse 3, 1986. http://www.theses.fr/1986TOU30026.
Texto completoHenrot, Simon. "Déconvolution et séparation d'images hyperspectrales en microscopie". Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0187.
Texto completoHyperspectral imaging refers to the acquisition of spatial images at many spectral bands, e.g. in microscopy. Processing such data is often challenging due to the blur caused by the observation system, mathematically expressed as a convolution. The operation of deconvolution is thus necessary to restore the original image. Image restoration falls into the class of inverse problems, as opposed to the direct problem which consists in modeling the image degradation process, treated in part 1 of the thesis. Another inverse problem with many applications in hyperspectral imaging consists in extracting the pure materials making up the image, called endmembers, and their fractional contribution to the data or abundances. This problem is termed spectral unmixing and its resolution accounts for the nonnegativity of the endmembers and abundances. Part 2 presents algorithms designed to efficiently solve the hyperspectral image restoration problem, formulated as the minimization of a composite criterion. The methods are based on a common framework allowing to account for several a priori assumptions on the solution, including a nonnegativity constraint and the preservation of edges in the image. The performance of the proposed algorithms are demonstrated on fluorescence confocal images of bacterial biosensors. Part 3 deals with the spectral unmixing problem from a geometrical viewpoint. A sufficient condition on abundance coefficients for the identifiability of endmembers is proposed. We derive and study a joint observation model and mixing model and demonstrate the interest of performing deconvolution as a prior step to spectral unmixing on confocal Raman microscopy data
Henrot, Simon. "Déconvolution et séparation d'images hyperspectrales en microscopie". Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00931579.
Texto completoSibarita, Jean-Baptiste. "Formation et restauration d'images en microscopie à rayons : application à l'observation d'échantillons biologiques". Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00345364.
Texto completoLibros sobre el tema "Image de microscopie"
Reimer, Ludwig. Scanning electron microscopy: Physics of image formation and microanalysis. 2a ed. Berlin: Springer, 1998.
Buscar texto completoR, Wootton, Springall D. R y Polak Julia M, eds. Image analysis in histology: Conventional and confocal microscopy. Cambridge: Published in association with the Royal Postgraduage Medical School, University of London by Cambridge University Press, 1995.
Buscar texto completoLynette, Ruschak, ed. Magnification: A pop-up lift-the-flap book. New York: Lodestar Books, 1993.
Buscar texto completoReimer, Ludwig. Transmission electron microscopy: Physics of image formation and microanalysis. 2a ed. Berlin: Springer-Verlag, 1989.
Buscar texto completo1958-, Wu Qiang, Merchant Fatima y Castleman Kenneth R, eds. Microscope image processing. Amsterdam: Academic Press, 2008.
Buscar texto completo1949-, Williams David B., Pelton Alan R y Gronsky R, eds. Images of materials. New York: Oxford University Press, 1991.
Buscar texto completoHarmuth, Henning F. Dirac's difference equation and the physics of finite differences. Amsterdam: Academic Press, 2008.
Buscar texto completoWitkin, Joan. Histology atlas of microscopic images. New York, N.Y.]: [Columbia University Health Sciences], 2003.
Buscar texto completoJens, Rittscher, Machiraju Raghu y Wong Stephen T. C, eds. Microscopic image analysis for life science applications. Boston [Mass.}: Artech House, 2008.
Buscar texto completoChen, Liang-Chia, Guo-Wei Wu, Sanjeev Kumar Singh y Wei-Hsin Chein. Diffractive Image Microscopy for 3D Imaging. Singapore: Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-7782-2.
Texto completoCapítulos de libros sobre el tema "Image de microscopie"
Cinquin, Bertrand, Joyce Y. Kao y Mark L. Siegal. "i.2.i. with the (Fruit) Fly: Quantifying Position Effect Variegation in Drosophila Melanogaster". En Bioimage Data Analysis Workflows ‒ Advanced Components and Methods, 147–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76394-7_7.
Texto completoNakanishi, Tomoko M. "Real-Time Element Movement in a Plant". En Novel Plant Imaging and Analysis, 109–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4992-6_4.
Texto completoKumar, Amit, Fahimuddin Shaik, B. Abdul Rahim y D. Sravan Kumar. "Image Enhancement of Leukemia Microscopic Images". En Signal and Image Processing in Medical Applications, 17–37. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0690-6_4.
Texto completoCarlton, Robert Allen. "Image Analysis". En Pharmaceutical Microscopy, 173–211. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8831-7_7.
Texto completoInoué, Shinya y Kenneth R. Spring. "Microscope Image Formation". En Video Microscopy, 13–117. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5859-0_2.
Texto completoInoué, Shinya. "Microscope Image Formation". En Video Microscopy, 93–148. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-6925-8_5.
Texto completoBright, D. S., D. E. Newbury, R. B. Marinenko,, E. B. Steel, y R. L. Myklebust. "Processing Images and Selecting Regions of Interest". En Images Of Materials, 309–37. Oxford University PressNew York, NY, 1992. http://dx.doi.org/10.1093/oso/9780195058567.003.0011.
Texto completoOrchard, Guy. "Light microscopy and digital pathology". En Histopathology, editado por Guy Orchard y Brian Nation. Oxford University Press, 2017. http://dx.doi.org/10.1093/hesc/9780198717331.003.0014.
Texto completoM, Dr Leo Caroline, Dr Nachiammai N, Dr Harini Priya A.H y Dr R. Sathish Muthukumar. "FLUORESCENCE MICROSCOPE". En Emerging Trends in Oral Health Sciences and Dentistry. Technoarete Publishers, 2022. http://dx.doi.org/10.36647/etohsd/2022.01.b1.ch030.
Texto completoHowell, Gareth y Kyle Dent. "Bioimaging: light and electron microscopy". En Tools and Techniques in Biomolecular Science. Oxford University Press, 2013. http://dx.doi.org/10.1093/hesc/9780199695560.003.0017.
Texto completoActas de conferencias sobre el tema "Image de microscopie"
Blochet, Baptiste y Marc Guillon. "Single-shot phase and polarimetric microscopy". En 3D Image Acquisition and Display: Technology, Perception and Applications, JF2A.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/3d.2024.jf2a.2.
Texto completoBueno, Gloria, Jesus Ruiz-Santaquiteria, Noelia Vallez, Jesus Salido, Gabriel Cristóbal y Oscar Deniz. "Telemicroscopy system applied to digital microscopy with a low-cost automated microscope". En Applications of Digital Image Processing XLVII, editado por Andrew G. Tescher y Touradj Ebrahimi, 1. SPIE, 2024. http://dx.doi.org/10.1117/12.3028227.
Texto completoGalliopoulou, Eirini C., Christopher Jones, Lawrence Coghlan, Mariia Zimina, Tomas L. Martin, Peter E. J. Flewitt, Alan Cocks, John Siefert y Jonathan D. Parker. "Creep Cavitation Imaging and Analysis in 9%Cr-1%Mo P91 Steels". En AM-EPRI 2024, 219–34. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0219.
Texto completoOzcan, Aydogan. "Virtual Staining of Label-free Tissue". En Frontiers in Optics, FM3D.1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.fm3d.1.
Texto completoStegmann, Heiko y Flavio Cognigni. "Few-Shot AI Segmentation of Semiconductor Device FIB-SEM Tomography Data". En ISTFA 2024, 13–21. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0013.
Texto completoKurumundayil, Leslie, Theresa Trötschler, Jonas Schönauer, Doga Can Öner, Stefan Rein y Matthias Demant. "Microscopic Image Analysis of Printed Structures Without a Microscope: A Deep Learning Approach". En 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 0802–4. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749537.
Texto completoKhoubafarin, Somaiyeh, Peuli Nath, Hannah Popofski y Aniruddha Ray. "High resolution Multi-Modal Microscopy using Microlens Substrates". En CLEO: Applications and Technology, ATu4B.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.atu4b.1.
Texto completoIncardona, Nicolo, Angel Tolosa, Gabriele Scrofani, Manuel Martinez-Corral y Genaro Saavedra. "The Lightfield Eyepiece: an Add-on for 3D Microscopy". En 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.3tu5a.6.
Texto completoXing, Z. G., C. M. Zhao, J. Wei y Z. Wei. "3D Reconstruction Based on Single Defocused Microscopic Image". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86644.
Texto completoChao, S. H., M. R. Holl, J. H. Koschwanez, R. H. Carlson, L. S. Jang y D. R. Meldrum. "Velocity Measurements in Microchannels With a Laser Scanning Microscope and Particle Linear Image Velocimetry". En ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2432.
Texto completoInformes sobre el tema "Image de microscopie"
Greaves, C. y J. B. R. Eamer. Focus stacking for cataloguing, presentation, and identification of microfossils in marine sediments. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331355.
Texto completoMoon, Bill. Employment of Crystallographic Image Processing Techniques to Scanning Probe Microscopy Images of Two-Dimensional Periodic Objects. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.699.
Texto completoPennycook, S. J. y A. R. Lupini. Image Resolution in Scanning Transmission Electron Microscopy. Office of Scientific and Technical Information (OSTI), junio de 2008. http://dx.doi.org/10.2172/939888.
Texto completoDabros, M. J. y P. J. Mudie. An Automated Microscope System For Image Analysis in Palynology and Micropaleontology. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/120356.
Texto completoSalapaka, Srinivasa M. y Petros G. Voulgaris. Fast Scanning and Fast Image Reconstruction in Atomic Force Microscopy. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2009. http://dx.doi.org/10.21236/ada495364.
Texto completoBajcsy, Peter y Nathan Hotaling. Interoperability of web computational plugins for large microscopy image analyses. Gaithersburg, MD: National Institute of Standards and Technology, marzo de 2020. http://dx.doi.org/10.6028/nist.ir.8297.
Texto completoWendelberger, James G. Localized Similar Image Texture in Images of Sample Laser Confocal Microscope for Area: FY15 DE07 SW C1 Zone 1 & 2 Section b. Office of Scientific and Technical Information (OSTI), febrero de 2019. http://dx.doi.org/10.2172/1496724.
Texto completoBolgert, Peter J. A Comparison of Image Quality Evaluation Techniques for Transmission X-Ray Microscopy. Office of Scientific and Technical Information (OSTI), agosto de 2012. http://dx.doi.org/10.2172/1049731.
Texto completoGłąb, Tomasz, Jarosław Knaga, Tomasz Zaleski, Paweł Dziwisz, Jan Gluza y Dariusz Glanas. Determination of soil particle size distribution using computer analysis of microscopic images. Publishing House of the University of Agriculture in Krakow, 2025. https://doi.org/10.15576/repourk/2025.1.3.
Texto completoWendelberger, James. Template size and proper overlap detection in Laser Confocal Microscope (LCM) images. Office of Scientific and Technical Information (OSTI), agosto de 2021. http://dx.doi.org/10.2172/1812643.
Texto completo