Artículos de revistas sobre el tema "III-V compound semiconductor nanostructures"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: III-V compound semiconductor nanostructures.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "III-V compound semiconductor nanostructures".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

John Chelliah, Cyril R. A. y Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures". Nanotechnology Reviews 6, n.º 6 (27 de noviembre de 2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.

Texto completo
Resumen
AbstractThe quest for high device density in advanced technology nodes makes strain engineering increasingly difficult in the last few decades. The mechanical strain and performance gain has also started to diminish due to aggressive transistor pitch scaling. In order to continue Moore’s law of scaling, it is necessary to find an effective way to enhance carrier transport in scaled dimensions. In this regard, the use of alternative nanomaterials that have superior transport properties for metal-oxide-semiconductor field-effect transistor (MOSFET) channel would be advantageous. Because of the extraordinary electron transport properties of certain III–V compound semiconductors, III–Vs are considered a promising candidate as a channel material for future channel metal-oxide-semiconductor transistors and complementary metal-oxide-semiconductor devices. In this review, the importance of the III–V semiconductor nanostructured channel in MOSFET is highlighted with a proposed III–V GaN nanostructured channel (thickness of 10 nm); Al2O3 dielectric gate oxide based MOSFET is reported with a very low threshold voltage of 0.1 V and faster switching of the device.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Dubrovskii V. G. "Limiting factors for the growth rate of epitaxial III-V compound semiconductors". Technical Physics Letters 49, n.º 4 (2023): 77. http://dx.doi.org/10.21883/tpl.2023.04.55886.19512.

Texto completo
Resumen
Limiting factors for the growth rate of epitaxial III-V compound semiconductors are investigated. A model based on the two connected diffusion equations for the group III and V adatoms applies for planar layers and different nanostructures including III-V nanowires. An expression for the step growth rate is obtained and a physical parameter is revealed which determines an element which actually limits the growth process. Keywords: III-V compound semiconductors, surface diffusion of adatoms, desorption, step growth rate.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Xu, Bo, Z. G. Wang, Y. H. Chen, P. Jin, X. L. Ye y Feng Qi Liu. "Controlled Growth of III-V Compound Semiconductor Nano-Structures and Their Application in Quantum-Devices". Materials Science Forum 475-479 (enero de 2005): 1783–86. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1783.

Texto completo
Resumen
This paper reviews our work on controlled growth of self-assembled semiconductor nanostructures, and their application in light-emission devices. High-power, long-life quantum dots (QD) lasers emitting at ~1 µm, red-emitting QD lasers, and long-wavelength QD lasers on GaAs substrates have successfully been achieved by optimizing the growth conditions of QDs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kim, Jong Su, Im Sik Han, Sang Jun Lee y Jin Dong Song. "Droplet Epitaxy for III-V Compound Semiconductor Quantum Nanostructures on Lattice Matched Systems". Journal of the Korean Physical Society 73, n.º 2 (julio de 2018): 190–202. http://dx.doi.org/10.3938/jkps.73.190.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zhao, Zuoming, Kameshwar Yadavalli, Zhibiao Hao y Kang L. Wang. "Direct integration of III–V compound semiconductor nanostructures on silicon by selective epitaxy". Nanotechnology 20, n.º 3 (16 de diciembre de 2008): 035304. http://dx.doi.org/10.1088/0957-4484/20/3/035304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Noh, Joo-Hyong, Hajime Asahi, Seong-Jin Kim, Minori Takemoto y Shun-ichi Gonda. "Scanning Tunneling Microscopy/Scanning Tunneling Spectroscopy Observation of III–V Compound Semiconductor Nanostructures". Japanese Journal of Applied Physics 35, Part 1, No. 6B (30 de junio de 1996): 3743–48. http://dx.doi.org/10.1143/jjap.35.3743.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Дубровский, В. Г. "Лимитирующие факторы скорости роста при эпитаксии полупроводниковых соединений III-V". Письма в журнал технической физики 49, n.º 8 (2023): 39. http://dx.doi.org/10.21883/pjtf.2023.08.55137.19512.

Texto completo
Resumen
Limiting factors for the growth rate of epitaxial III-V compound semiconductors are investigated. A model based on the two connected diffusion equations for the group III and V adatoms applies for planar layers and different nanostructures including III-V nanowires. An expression for the step growth rate is obtained and a physical parameter is revealed which determines an element which actually limits the growth process.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kang, M., J. H. Wu, S. Huang, M. V. Warren, Y. Jiang, E. A. Robb y R. S. Goldman. "Universal mechanism for ion-induced nanostructure formation on III-V compound semiconductor surfaces". Applied Physics Letters 101, n.º 8 (20 de agosto de 2012): 082101. http://dx.doi.org/10.1063/1.4742863.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zanotti, Simone, Momchil Minkov, Shanhui Fan, Lucio C. Andreani y Dario Gerace. "Doubly-Resonant Photonic Crystal Cavities for Efficient Second-Harmonic Generation in III–V Semiconductors". Nanomaterials 11, n.º 3 (28 de febrero de 2021): 605. http://dx.doi.org/10.3390/nano11030605.

Texto completo
Resumen
Second-order nonlinear effects, such as second-harmonic generation, can be strongly enhanced in nanofabricated photonic materials when both fundamental and harmonic frequencies are spatially and temporally confined. Practically designing low-volume and doubly-resonant nanoresonators in conventional semiconductor compounds is challenging owing to their intrinsic refractive index dispersion. In this work we review a recently developed strategy to design doubly-resonant nanocavities with low mode volume and large quality factor via localized defects in a photonic crystal structure. We built on this approach by applying an evolutionary optimization algorithm in connection with Maxwell equations solvers; the proposed design recipe can be applied to any material platform. We explicitly calculated the second-harmonic generation efficiency for doubly-resonant photonic crystal cavity designs in typical III–V semiconductor materials, such as GaN and AlGaAs, while targeting a fundamental harmonic at telecom wavelengths and fully accounting for the tensor nature of the respective nonlinear susceptibilities. These results may stimulate the realization of small footprint photonic nanostructures in leading semiconductor material platforms to achieve unprecedented nonlinear efficiencies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mi, Zetian. "III-V compound semiconductor nanostructures on silicon: epitaxial growth, properties, and applications in light emitting diodes and lasers". Journal of Nanophotonics 3, n.º 1 (1 de enero de 2009): 031602. http://dx.doi.org/10.1117/1.3081051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Cai, Yu, Chengbao Yao y Jie Yuan. "Enhancement of Photoelectrochemical Performance of Ag@ZnO Nanowires: Experiment and Mechanism". Journal of Nanomaterials 2020 (20 de marzo de 2020): 1–9. http://dx.doi.org/10.1155/2020/6742728.

Texto completo
Resumen
This paper focuses on the enhancement of photoelectrochemical (PEC) performance of uniform silver nanoparticles-decorated ZnO (Ag@ZnO) nanowires, which have been synthesized by two-step chemical vapor deposition to prepare ZnO nanowires then magnetron sputtering method to deposit Ag nanoparticles. Moreover, we analyzed the mechanisms of the PEC behavior of the Ag@ZnO nanowires. The PEC characteristics show that the current density of Ag@ZnO nanowires increased comparing to that of unmodified ZnO nanowires. The optimized content of the Ag-decorated ZnO photoelectrode is up to the maximum photocurrent density of 24.8 μAcm-2 at 1 V vs. Ag/AgCl, which was almost four times than that of the unmodified ZnO photoelectrode. Based on the surface plasmon resonance (SPR), effect of Ag nanoparticles was enhanced PEC performance of the Ag@ZnO nanowires. Because SPR effect of Ag nanoparticles extended the light absorption and enhanced the separation efficiency of the photogenerated electron-hole pairs. The remarkable PEC properties offer metals-semiconductor compound nanostructures materials as a promising electron source for high current density applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hadia, Nomery, Santiago Garcia-Granda y Jose Garcia. "Nanocrystalline Oxides: CdS nanowires synthesized by solvothermal method". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C1414. http://dx.doi.org/10.1107/s2053273314085854.

Texto completo
Resumen
Recent advances in the field of nanotechnology produced an assortment of one-dimensional (1D) structures, such as nanowires and nanorods. These fascinating materials are the potential building blocks for a wide range of nanoscale electronics, optoelectronics, magnetoelectronics, or sensing devices [1]. Parallel to the success with group IV and groups III–V compounds semiconductor nanostructures, semiconducting metal oxide materials with wide band gaps are attracting attention [2-3]. The main aim of this communication is to report our results on the application of several new techniques, particularly the use of hydrothermal synthesis, to fabricate single crystal one-dimensional nanostructured materials, study their growth processes, understand the growth mechanisms and investigate their physical properties. A wide range of remarkable features are then presented, to cover a number of metal oxides, such as ZnO, Sb2O3, CdS, MgO, α-Fe2O3, or TiO2, describing their structures, optical, magnetic, mechanical and chemical sensing properties. These studies constitute the basis for developing versatile applications based on metal oxide 1D systems as well as highlighting the current progress in device development. To exemplify, the as-prepared CdS nanowires have average 28 nm in diameter and length up to several micrometres. The direct band gap of the CdS nanowires is 2.56 eV calculated by the UV-vis absorption spectra. The PL spectrum has two distinct emission bands at 502 nm and 695 nm, which are associated with the near-band-edge emission and defect emission, respectively. These synthesized single-crystal CdS nanowires have a high potential in the optoelectronic applications of nanolasers, solar cells, lighting-emitting diodes or photodetectors. Acknowledgments: Erasmus Mundus MEDASTAR (Mediterranean Area for Science, Technology and Research) Programme, 2011–4051/002–001-EMA2, Spanish MINECO (MAT2010-15094, Factoría de Cristalización – Consolider Ingenio 2010) and ERDF.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Witt, Elena, Jürgen Parisi y Joanna Kolny-Olesiak. "Selective Growth of Gold onto Copper Indium Sulfide Selenide Nanoparticles". Zeitschrift für Naturforschung A 68, n.º 5 (1 de mayo de 2013): 398–404. http://dx.doi.org/10.5560/zna.2013-0016.

Texto completo
Resumen
Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS2). CuInS2/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Schmidt, W. G. "III-V compound semiconductor (001) surfaces". Applied Physics A: Materials Science & Processing 75, n.º 1 (1 de julio de 2002): 89–99. http://dx.doi.org/10.1007/s003390101058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Alonso-González, P., L. González, D. Fuster, J. Martín-Sánchez y Yolanda González. "Surface Localization of Buried III–V Semiconductor Nanostructures". Nanoscale Research Letters 4, n.º 8 (9 de mayo de 2009): 873–77. http://dx.doi.org/10.1007/s11671-009-9329-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Paiman, S., H. J. Joyce, J. H. Kang, Q. Gao, H. H. Tan, Y. Kim, X. Zhang, J. Zou y C. Jagadish. "ChemInform Abstract: III-V Compound Semiconductor Nanowires". ChemInform 42, n.º 43 (29 de septiembre de 2011): no. http://dx.doi.org/10.1002/chin.201143202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Reznik R. R., Gridchin V. O., Kotlyar K. P., Khrebtov A. I., Ubyivovk E. V., Mikushev S. V., Li D. et al. "Formation of InGaAs quantum dots in the body of AlGaAs nanowires via molecular-beam epitaxy". Semiconductors 56, n.º 7 (2022): 492. http://dx.doi.org/10.21883/sc.2022.07.54653.16.

Texto completo
Resumen
The results of experimental studies on the synthesis by molecular-beam epitaxy of AlGaAs nanowires with InGaAs quantum dots are presented. It was shown that, as in the case of the InP/InAsP material system, the formation of predominantly two objects is observed in the body of AlGaAs nanowire: InGaAs quantum dot due to axial growth and InGaAs quantum well due to radial growth. It is important to note that the grown nanostructures were formed predominantly in the wurtzite crystallographic phase. The results of the grown nanostructures physical properties studies indicate that they are promising for moving single-photon sources to the long-wavelength region. The proposed technology opens up new possibilities for integration direct-gap III-V materials with a silicon platform for various applications in photonics and quantum communications. Keywords: semiconductors, nanowires, quantum dots, III-V compounds, silicon, molecular-beam epitaxy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Cipriano, Luis A., Giovanni Di Liberto, Sergio Tosoni y Gianfranco Pacchioni. "Quantum confinement in group III–V semiconductor 2D nanostructures". Nanoscale 12, n.º 33 (2020): 17494–501. http://dx.doi.org/10.1039/d0nr03577g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Lee, Jeong-Oh, Jong-Wook Lee, Kwan-Hyi Lee, Won-Young Jeung y Jong-Yup Lee. "Electrochemical Formation of III-V Compound Semiconductor InSb". Journal of the Korean Electrochemical Society 8, n.º 3 (1 de agosto de 2005): 135–38. http://dx.doi.org/10.5229/jkes.2005.8.3.135.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Heinrich, M., C. Domke, Ph Ebert y K. Urban. "Charged steps on III-V compound semiconductor surfaces". Physical Review B 53, n.º 16 (15 de abril de 1996): 10894–97. http://dx.doi.org/10.1103/physrevb.53.10894.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Pearton, S. J. "Critical issues of III–V compound semiconductor processing". Materials Science and Engineering: B 44, n.º 1-3 (febrero de 1997): 1–7. http://dx.doi.org/10.1016/s0921-5107(96)01744-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Coelho, J., G. Patriarche, F. Glas, I. Sagnes y G. Saint-Girons. "Stress-engineered orderings of self-assembled III-V semiconductor nanostructures". physica status solidi (c) 2, n.º 4 (marzo de 2005): 1245–50. http://dx.doi.org/10.1002/pssc.200460413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kohl, P. A. y F. W. Ostermayer. "Photoelectrochemical Methods for III-V Compound Semiconductor Device Processing". Annual Review of Materials Science 19, n.º 1 (agosto de 1989): 379–99. http://dx.doi.org/10.1146/annurev.ms.19.080189.002115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

GAO, Q., H. J. JOYCE, S. PAIMAN, J. H. KANG, H. H. TAN, Y. KIM, L. M. SMITH et al. "III-V COMPOUND SEMICONDUCTOR NANOWIRES FOR OPTOELECTRONIC DEVICE APPLICATIONS". International Journal of High Speed Electronics and Systems 20, n.º 01 (marzo de 2011): 131–41. http://dx.doi.org/10.1142/s0129156411006465.

Texto completo
Resumen
GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si ) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB , can also be engineered by carefully controlling the V/III ratio and catalyst size.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hughes, R. C. "III-V Compound Semiconductor Superlattices For Infrared Photodetector Applications". Optical Engineering 26, n.º 3 (1 de marzo de 1987): 263249. http://dx.doi.org/10.1117/12.7974058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Xia, W., S. A. Pappert, B. Zhu, A. R. Clawson, P. K. L. Yu, S. S. Lau, D. B. Poker, C. W. White y S. A. Schwarz. "Ion mixing of III‐V compound semiconductor layered structures". Journal of Applied Physics 71, n.º 6 (15 de marzo de 1992): 2602–10. http://dx.doi.org/10.1063/1.351079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Hill, D. M., F. Xu, Zhangda Lin y J. H. Weaver. "Atomic distributions across metal–III-V-compound-semiconductor interfaces". Physical Review B 38, n.º 3 (15 de julio de 1988): 1893–900. http://dx.doi.org/10.1103/physrevb.38.1893.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Gerischer, H. "Physics and Chemistry of III—V Compound Semiconductor Interfaces". Electrochimica Acta 31, n.º 12 (diciembre de 1986): 1680. http://dx.doi.org/10.1016/0013-4686(86)87096-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ansara, I., C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert et al. "A binary database for III–V compound semiconductor systems". Calphad 18, n.º 2 (abril de 1994): 177–222. http://dx.doi.org/10.1016/0364-5916(94)90027-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Wessels, Bruce. "Physics and chemistry of III–V compound semiconductor interfaces". Materials Science and Engineering 96 (diciembre de 1987): 325–26. http://dx.doi.org/10.1016/0025-5416(87)90568-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

PEARTON, S. J. "ION IMPLANTATION IN III–V SEMICONDUCTOR TECHNOLOGY". International Journal of Modern Physics B 07, n.º 28 (30 de diciembre de 1993): 4687–761. http://dx.doi.org/10.1142/s0217979293003814.

Texto completo
Resumen
A review is given of the applications of ion implantation in III–V compound semiconductor device technology, beginning with the fundamentals of ion stopping in these materials and describing the use of implantation for both doping and isolation. There is increasing interest in the use of MeV implantation to create unique doping profiles or for the isolation of thick device structures such as heterojunction bipolar transistors or multi quantum well lasers, and we give details of these areas and the metal masking layers necessary for selective area processing. Finally, examples are given of the use of implantation in a variety of III–V devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Silveira, J. P., J. M. Garcia y F. Briones. "Surface stress effects during MBE growth of III–V semiconductor nanostructures". Journal of Crystal Growth 227-228 (julio de 2001): 995–99. http://dx.doi.org/10.1016/s0022-0248(01)00966-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Riel, Heike, Lars-Erik Wernersson, Minghwei Hong y Jesús A. del Alamo. "III–V compound semiconductor transistors—from planar to nanowire structures". MRS Bulletin 39, n.º 8 (agosto de 2014): 668–77. http://dx.doi.org/10.1557/mrs.2014.137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Malheiros-Silveira, Gilliard N., Fanglu Lu, Indrasen Bhattacharya, Thai-Truong D. Tran, Hao Sun y Connie J. Chang-Hasnain. "III–V Compound Semiconductor Nanopillars Monolithically Integrated to Silicon Photonics". ACS Photonics 4, n.º 5 (21 de abril de 2017): 1021–25. http://dx.doi.org/10.1021/acsphotonics.6b01035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Xue, Q. "Scanning tunneling microscopy of III-V compound semiconductor (001) surfaces". Progress in Surface Science 56, n.º 1-2 (octubre de 1997): 1–131. http://dx.doi.org/10.1016/s0079-6816(97)00033-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Gao, Q., H. H. Tan, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Jin Zou y C. Jagadish. "Growth and properties of III–V compound semiconductor heterostructure nanowires". Semiconductor Science and Technology 26, n.º 1 (15 de diciembre de 2010): 014035. http://dx.doi.org/10.1088/0268-1242/26/1/014035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Gao, Q., H. H. Tan, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Jin Zou y C. Jagadish. "Growth and properties of III–V compound semiconductor heterostructure nanowires". Semiconductor Science and Technology 27, n.º 5 (27 de marzo de 2012): 059501. http://dx.doi.org/10.1088/0268-1242/27/5/059501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Shi, W. S., Y. F. Zheng, N. Wang, C. S. Lee y S. T. Lee. "A General Synthetic Route to III-V Compound Semiconductor Nanowires". Advanced Materials 13, n.º 8 (abril de 2001): 591–94. http://dx.doi.org/10.1002/1521-4095(200104)13:8<591::aid-adma591>3.0.co;2-#.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Kalem, S., A. Curtis, Q. Hartmann, B. Moser y G. Stillman. "Sub-Gap Excited Photoluminescence in III-V Compound Semiconductor Heterostructures". physica status solidi (b) 221, n.º 1 (septiembre de 2000): 517–22. http://dx.doi.org/10.1002/1521-3951(200009)221:1<517::aid-pssb517>3.0.co;2-m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Clemans, Jim E., William A. Gault y Eric M. Monberg. "The Production of High Quality, III-V Compound Semiconductor Crystals". AT&T Technical Journal 65, n.º 4 (8 de julio de 1986): 86–98. http://dx.doi.org/10.1002/j.1538-7305.1986.tb00469.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kasenov, B. K. "ELECTROPHYSICAL PROPERTIES OF NEW NANOSTRUCTURED COPPER-ZINC MANGANITE OF LANTHANUM AND MAGNESIUM". Eurasian Physical Technical Journal 19, n.º 2 (40) (15 de junio de 2022): 42–47. http://dx.doi.org/10.31489/2022no2/42-47.

Texto completo
Resumen
The polycrystalline copper-zinc manganite was synthesized by the solid-phase interaction in the range of 800-1200 °C of oxides of lanthanum (III), copper (II), zinc (II), manganese (III) and magnesium carbonate, thus its nanostructured particles were first obtained by grinding on the vibrating mill “Retsch” (Germany). The X-ray investigations determined that the nanostructured manganite is crystallized in the cubic syngony. On the LCR-7817/827 device(Company «Good Will Instrument Co., Ltd., Taiwan») in the range of 293-483 K at frequencies equal to 1.5 and 10 kHz, the dielectric constantand electrical resistance were investigated and it was found that this compound at 293-353 K has the semiconductorconductivity, at 353-373 K -metal and at 373-483 K -semiconductor conductivity again. The band gap widths were calculated. The permittivity at 483 K reaches gigantic values at all frequencies.Referring to the above, the objective of this paper is to study the temperature dependence of the dielectric constantand the electrical resistance of a new nanostructured copper-zinc manganite of lanthanum and magnesium.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Glas, F., J. Coelho, G. Patriarche y G. Saint-Girons. "Buried dislocation networks for the controlled growth of III–V semiconductor nanostructures". Journal of Crystal Growth 275, n.º 1-2 (febrero de 2005): e1647-e1653. http://dx.doi.org/10.1016/j.jcrysgro.2004.11.219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Coelho, J., G. Patriarche, F. Glas, I. Sagnes y G. Saint-Girons. "Dislocation networks adapted to order the growth of III-V semiconductor nanostructures". physica status solidi (c) 2, n.º 6 (abril de 2005): 1933–37. http://dx.doi.org/10.1002/pssc.200460528.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lee, Kwan-Hyi, Jong-Wook Lee, Ho-Dong Park, Won-Young Jeung y Jong-Yup Lee. "Electrochemical Formation and Characterization of III-V Compound Semiconductor InSb Nanowires". Journal of the Korean Electrochemical Society 8, n.º 3 (1 de agosto de 2005): 130–34. http://dx.doi.org/10.5229/jkes.2005.8.3.130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Nishio, Kenya, Suguru Saito, Yoshiya Hagimoto y Hayato Iwamoto. "Effect of WET treatment on Group III-V Compound Semiconductor Surface". Solid State Phenomena 282 (agosto de 2018): 43–47. http://dx.doi.org/10.4028/www.scientific.net/ssp.282.43.

Texto completo
Resumen
In this work, we investigated interfacial properties of InP, which is a typical group III-V compound used for semiconductors, by using a chemical-treated metal oxide semiconductor (MOS) capacitor. The interfacial properties of InP is more affected by interface state density than the surface roughness and is greatly affected by In2O3in particular. Additionally, we evaluated In2O3growth during 24-hour rinsing and air exposure and found that In2O3on an InP surface grows larger during rinsing than during air exposure. To reduce In2O3, the rinse needs to be optimized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Burstein, L., J. Bregman y Yoram Shapira. "Characterization of interface states at III‐V compound semiconductor‐metal interfaces". Journal of Applied Physics 69, n.º 4 (15 de febrero de 1991): 2312–16. http://dx.doi.org/10.1063/1.348712.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Zhang, Ao, Jianjun Gao y Hong Wang. "An empirical noise model for III-V compound semiconductor based HBT". Solid-State Electronics 163 (enero de 2020): 107679. http://dx.doi.org/10.1016/j.sse.2019.107679.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Wade, Travis L., Raman Vaidyanathan, Uwe Happek y John L. Stickney. "Electrochemical formation of a III–V compound semiconductor superlattice: InAs/InSb". Journal of Electroanalytical Chemistry 500, n.º 1-2 (marzo de 2001): 322–32. http://dx.doi.org/10.1016/s0022-0728(00)00473-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Nakamura, M., H. Fujioka, K. Ono, M. Takeuchi, T. Mitsui y M. Oshima. "Molecular dynamics simulation of III–V compound semiconductor growth with MBE". Journal of Crystal Growth 209, n.º 2-3 (febrero de 2000): 232–36. http://dx.doi.org/10.1016/s0022-0248(99)00546-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Dautremont-Smith, William C., R. J. McCoy, Randolph H. Burton y Albert G. Baca. "Fabrication Technologies for III-V Compound Semiconductor Photonic and Electronic Devices". AT&T Technical Journal 68, n.º 1 (2 de enero de 1989): 64–82. http://dx.doi.org/10.1002/j.1538-7305.1989.tb00647.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía