Libros sobre el tema "III-V compound semiconductor nanostructures"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: III-V compound semiconductor nanostructures.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 21 mejores mejores libros para su investigación sobre el tema "III-V compound semiconductor nanostructures".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Yates, Martin John. Electron microscopy of compound III-V semiconductor layers. Birmingham: University ofBirmingham, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wilmsen, Carl W., ed. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4835-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

W, Wilmsen Carl, ed. Physics and chemistry of III-V compound semiconductor interfaces. New York: Plenum Press, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Doping in III-V semiconductors. Cambridge [England]: Cambridge University Press, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Liquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Bristol: A. Hilger, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

V, Swaminathan, Pearton S. J, Manasreh Mahmoud Omar y Materials Research Society, eds. Degradation mechanisms in III-V compound semiconductor devices and structures: Symposium held April 17-18, 1990, San Francisco, California, U.S.A. Pittsburgh, Pa: Materials Research Society, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wilmsen, Carl. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Springer London, Limited, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wilmsen, Carl W. Physics and Chemistry of III-V Compound Semiconductor Interfaces. Springer, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

III-V Compound Semiconductors and Semiconductor Properties of Superionic Materials. Elsevier, 1988. http://dx.doi.org/10.1016/s0080-8784(08)x6008-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chang, Kow-Ming. Thermodynamics of groups III-V and II-VI compound semiconductors. 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Pearton, S. J., D. K. Sadana y J. M. Zavada. Advanced III-V Compound Semiconductor Growth, Processing and Devices: Volume 240. University of Cambridge ESOL Examinations, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Schubert, E. F. Doping in III-V Semiconductors (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering). Cambridge University Press, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Pearton, S. J., M. O. Manasreh y V. Swaminathan. Degradation Mechanisms in III-V Compound Semiconductor Devices and Structures: Volume 184. University of Cambridge ESOL Examinations, 2014.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

J, Pearton S., Sadana Devendra K y Zavada J. M, eds. Advanced III-V compound semiconductor growth, processing and devices: Symposium held December 2-5, 1991, Boston, Massachusetts, U.S.A. Pittsburgh, Pa: Materials Research Society, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Willardson, R. K. Semiconductors and Semimetals: Iii-V Compound Semiconductors Semiconductor Properties of Superionic Materials (Semiconductors and Semimetals). Academic Press, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Schulte, Donald W. Growth and characterization of III-V compound semiconductor materials for use in novel MODFET structures and related devices. 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

(Editor), Philippe Max Fauchet, Jillian M. Buriak (Editor), Leigh T. Canham (Editor), Mobuyoshi Koshida (Editor) y Burce E. White (Editor), eds. Microcrystalline and Nanocrystalline Semiconductors--2000: Symposium Held November 27-30, 2000, Boston, Massachusetts, U.S.A. (Materials Research Society Symposia Proceedings, V. 638.). Materials Research Society, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Pearton, S. J. y V. Swaminathan. Degradation Mechanisms in Iii-V Compound Semiconductor Devices and Structures: Symposium Held April 17-18, 1990, San Francisco (Materials Research Society Symposium Proceedings). Materials Research Society, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Vvedensky, Dimitri D. Quantum dots: Self-organized and self-limiting assembly. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.6.

Texto completo
Resumen
This article describes the self-organized and self-limiting assembly of quantum dots, with particular emphasis on III–V semiconductor quantum dots. It begins with a background on the second industrial revolution, highlighted by advances in information technology and which paved the way for the era of ‘quantum nanostructures’. It then considers the science and technology of quantum dots, followed by a discussion on methods of epitaxial growth and fabrication methodologies of semiconductor quantum dots and other supported nanostructures, including molecular beam epitaxy and metalorganic vapor-phase epitaxy. It also examines self-organization in Stranski–Krastanov systems, site control of quantum dots on patterned substrates, nanophotonics with quantum dots, and arrays of quantum dots.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Li, Jing y Xiao-Ying Huang. Nanostructured crystals: An unprecedented class of hybrid semiconductors exhibiting structure-induced quantum confinement effect and systematically tunable properties. Editado por A. V. Narlikar y Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.16.

Texto completo
Resumen
This article describes the structure-induced quantum confinement effect in nanostructured crystals, a unique class of hybrid semiconductors that incorporate organic and inorganic components into a single-crystal lattice via covalent (coordinative) bonds to form extended one-, two- and three-dimensional network structures. These structures are comprised of subnanometer-sized II-VI semiconductor segments (inorganic component) and amine molecules (organic component) arranged into perfectly ordered arrays. The article first provides an overview of II-VI and III-V semiconductors, II-VI colloidal quantum dots, inorganic-organic hybrid materials before discussing the design and synthesis of I-VI-based inorganic-organic hybrid nanostructures. It also considers the crystal structures, quantum confinement effect, bandgaps, and optical properties, thermal properties, thermal expansion behavior of nanostructured crystals.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Glazov, M. M. Hyperfine Interaction of Electron and Nuclear Spins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0004.

Texto completo
Resumen
This chapter discusses the key interaction–hyperfine coupling–which underlies most of phenomena in the field of electron and nuclear spin dynamics. This interaction originates from magnetic interaction between the nuclear and electron spins. For conduction band electrons in III–V or II–VI semiconductors, it is reduced to a Fermi contact interaction whose strength is proportional to the probability of finding an electron at the nucleus. A more complex situation is realized for valence band holes where hole Bloch functions vanish at the nuclei. Here the hyperfine interaction is of the dipole–dipole type. The modification of the hyperfine coupling Hamiltonian in nanosystems is also analyzed. The chapter contains also an overview of experimental data aimed at determination of the hyperfine interaction parameters in semiconductors and semiconductor nanostructures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía