Literatura académica sobre el tema "IA de confiance"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "IA de confiance".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "IA de confiance"
Preteux, Jérôme. "La confiance en l’IA pour une IA d’emploi". Revue Défense Nationale N° 855, n.º 10 (1 de diciembre de 2022): 91–99. http://dx.doi.org/10.3917/rdna.855.0091.
Texto completoMasciotra, Viviane y Jean-Sébastien Boudrias. "Promouvoir l’adoption de l’IA dans les milieux d’emploi par l’entremise de l’explicabilité et de la confiance : une étude empirique". Ad machina, n.º 8 (13 de diciembre de 2024): 84–113. https://doi.org/10.1522/radm.no8.1840.
Texto completoDevillers, Laurence. "Le langage non responsable des systèmes d’intelligence artificielle (IA) générative". Champ lacanien N° 28, n.º 1 (2 de octubre de 2024): 133–38. http://dx.doi.org/10.3917/chla.028.0133.
Texto completoPluchart, Jean-Jacques. "Transformation des entreprises et tiers de confiance : la mutation de la chaîne de confiance dans le management des entreprises". Vie & sciences de l'entreprise N° 216-217, n.º 1 (21 de agosto de 2023): 62–91. http://dx.doi.org/10.3917/vse.216.0062.
Texto completoBerger, Alain y Jean-Pierre Cotton. "Quel avenir pour la modélisation et la structuration dans un projet de management de la connaissance ?" I2D - Information, données & documents 1, n.º 1 (19 de julio de 2023): 88–94. http://dx.doi.org/10.3917/i2d.231.0088.
Texto completoChiaroni, Julien. "Vers la confiance, voire la certification, des systèmes à base d’intelligence artificielle". Annales des Mines - Enjeux numériques N° 13, n.º 1 (24 de enero de 2021): 37–41. http://dx.doi.org/10.3917/ennu.013.0037.
Texto completoJean, Aurélie. "Une brève introduction à l’intelligence artificielle". médecine/sciences 36, n.º 11 (noviembre de 2020): 1059–67. http://dx.doi.org/10.1051/medsci/2020189.
Texto completoVaileanu, Ingrid y Florin Paun. "L’économie de la fonctionnalité des données qualifiées au cœur d’une croissance vertueuse". Marché et organisations Pub. anticipées (31 de diciembre de 2024): I114—XXXVII. http://dx.doi.org/10.3917/maorg.pr1.0114.
Texto completoVaileanu, Ingrid y Florin Paun. "L’économie de la fonctionnalité des données qualifiées au cœur d’une croissance vertueuse". Marché et organisations N° 51, n.º 3 (31 de julio de 2024): 129–65. http://dx.doi.org/10.3917/maorg.051.0129.
Texto completoSampaio, Gêisa Aiane de Morais, Andressa Vieira Landgraf, Pedro Henrique Sette de Souza y Renata de Oliveira Cartaxo. "Avaliação da autopercepção de confiança clínica de concluintes do curso de Odontologia". Arquivos em Odontologia 58 (26 de noviembre de 2022): 199–208. http://dx.doi.org/10.35699/2178-1990.2022.37525.
Texto completoTesis sobre el tema "IA de confiance"
Le, Coz Adrien. "Characterization of a Reliability Domain for Image Classifiers". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG109.
Texto completoDeep neural networks have revolutionized the field of computer vision. These models learn a prediction task from examples. Image classification involves identifying the main object present in the image. Despite the very good performance of neural networks on this task, they often fail unexpectedly. This limitation prevents them from being used in many applications. The goal of this thesis is to explore methods for defining a reliability domain that would clarify the conditions under which a model is trustworthy. Three aspects have been considered. The first is qualitative: generating synthetic extreme examples helps illustrate the limits of a classifier and better understand what causes it to fail. The second aspect is quantitative: selective classification allows the model to abstain in cases of high uncertainty, and calibration helps better quantify prediction uncertainty. Finally, the third aspect involves semantics: multimodal models that associate images and text are used to provide textual descriptions of images likely to lead to incorrect or, conversely, to correct predictions
Taheri, Sojasi Yousef. "Modeling automated legal and ethical compliance for trustworthy AI". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS225.
Texto completoThe advancements in artificial intelligence have led to significant legal and ethical issues related to privacy, bias, accountability, etc. In recent years, many regulations have been put in place to limit or mitigate the risks associated with AI. Compliance with these regulations are necessary for the reliability of AI systems and to ensure that they are being used responsibly. In addition, reliable AI systems should also be ethical, ensuring alignment with ethical norms. Compliance with applicable laws and adherence to ethical principles are essential for most AI applications. We investigate this problem from the point of view of AI agents. In other words, how an agent can ensure the compliance of its actions with legal and ethical norms. We are interested in approaches based on logical reasoning to integrate legal and ethical compliance in the agent's planning process. The specific domain in which we pursue our objective is the processing of personal data. i.e., the agent's actions involve the use and processing of personal data. A regulation that applies in such a domain is the General Data Protection Regulations (GDPR). In addition, processing of personal data may entail certain ethical risks with respect to privacy or bias.We address this issue through a series of contributions presented in this thesis. We start with the issue of GDPR compliance. We adopt Event Calculus with Answer Set Programming(ASP) to model agents' actions and use it for planning and checking the compliance with GDPR. A policy language is used to represent the GDPR obligations and requirements. Then we investigate the issue of ethical compliance. A pluralistic ordinal utility model is proposed that allows one to evaluate actions based on moral values. This model is based on multiple criteria and uses voting systems to aggregate evaluations on an ordinal scale. We then integrate this utility model and the legal compliance framework in a Hierarchical Task Network(HTN) planner. In this contribution, legal norms are considered hard constraints and ethical norm as soft constraint. Finally, as a last step, we further explore the possible combinations of legal and ethical compliance with the planning agent and propose a unified framework. This framework captures the interaction and conflicts between legal and ethical norms and is tested in a use case with AI systems managing the delivery of health care items
Bresson, Roman. "Neural learning and validation of hierarchical multi-criteria decision aiding models with interacting criteria". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG008.
Texto completoMulticriteria Decision Aiding (MCDA) is a field that aims at assisting expert decision mak ers (DM) in problems such as selecting, ranking, or classifying alternatives defined on several inter acting attributes. Such models do not make the decision, but assist the DM, who takes the final decision. It is thus crucial for the model to offer ways for the DM to maintain operational awareness, in particular in safety-critical contexts where errors can have dire consequences. It is thus a prerequisite of MCDA models to be intelligible, in terpretable, and to have a behaviour that is highly constrained by information stemming from in do main knowledge. Such models are usually built hand in hand with a field expert, obtaining infor mation through a Q&A procedure, and eliciting the model through methods rooted in operations research. On the other hand, Machine Learning (ML), and more precisely Preference Learning (PL), bases its approach on learning the optimal model from fitting data. This field usually focuses on model performances, tuning complex black-boxes to ob tain a statistically low error on new examples cases. While this is adapted to many settings, it is out of the question for decision aiding settings, as neither constrainedness nor intelligibility are available. This thesis bridges both fields. We focus on a certain class of MCDA models, called utilitaris tic hierarchical Choquet integrals (UHCI). Our first contribution, which is theoretical, is to show the identifiability (or unicity of the parameterization) of UHCIs This result motivates our second con tribution: the Neur-HCI framework, an archi tecture of neural network modules which can learn the parameters of a UHCI. In particular, all Neur HCI models are guaranteed to be formally valid, fitting the constraints that befit such a model, and remain interpretable. We show empirically that Neur-HCI models perform well on both artificial and real dataset, and that they exhibit remarkable stability, making it a relevant tool for alleviating the model elicitation effort when data is readily available, along with making it a suitable analysis tool for indentifying patterns in the data
Libros sobre el tema "IA de confiance"
Protéger les élections démocratiques par la sauvegarde de l’intégrité de l’information. International IDEA; Forum sur l’information et la démocratie; Democracy Reporting International, 2024. http://dx.doi.org/10.31752/idea.2024.9.
Texto completoCapítulos de libros sobre el tema "IA de confiance"
Flores-Garrido, Marisol. "Fuck the algorithm: Navegando la promesa tecnológica y el impacto social de la IA". En Inteligencia artificial transformación, retos y prospectiva social, 101–18. Astra Ediciones, 2024. http://dx.doi.org/10.61728/ae24001052.
Texto completoCAMBAZA, E. M. y F. F. G. GUSTAVO. "Inteligência Artificial: Ética do seu Uso na Triagem para o Transplante de Órgãos". En Temas de Pesquisa em Bioética, 51–66. Editora Científica Digital, 2024. https://doi.org/10.37885/241118117.
Texto completoSchmidt Bortolini, Vanessa, Cristiano Colombo, José Luiz de Moura Faleiros Júnior y Eduardo Neubarth Trindade. "(In)explicabilidade da inteligência artificial na saúde: revisão da literatura, regulação e novos rumos". En Direito, Tecnologia e Inovação - vol. 6: Ciência de Dados e Direito, 193–224. Centro DTIBR, 2024. http://dx.doi.org/10.59224/dti6.ch6.
Texto completoVasconcelos, Eduardo Silva, Leandro Aureliano da Silva, Débora Vasconcelos Melo, Adriano Dawison de Lima, Luiz Fernando Ribeiro de Paiva y Cleiton Silvano Goulart. "Inteligencia Artificial en la Gestión Agrícola: Uso de Modelos de Bosque Aleatorio para la Predicción de Producción y Reserva de Semillas en Brasil". En Agricultural and Biological Sciences: Foundations and Applications. Seven Editora, 2024. http://dx.doi.org/10.56238/sevened2024.023-006.
Texto completoActas de conferencias sobre el tema "IA de confiance"
Condori-Fernández, Nelly. "Sostenibilidad y sistemas basados en inteligencia artificial". En Congreso Internacional de Ingeniería de Sistemas. Universidad de Lima, 2024. http://dx.doi.org/10.26439/ciis2023.7077.
Texto completoSilva, Francisco Luciano Quirino da, Andréia Libório Sampaio, Carla Ilane Moreira Bezerra y Ingrid Teixeira Monteiro. "Brainwriting na elicitação de requisitos para IA confiável". En Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/washes.2023.230891.
Texto completoCardoso, Joyce y Cleide Muñoz. "O FUTURO DA INTELIGÊNCIA ARTIFICIAL NA EDUCAÇÃO A DISTÂNCIA: ASPECTOS LEGISLATIVOS". En XIX Congresso Internacional de Tecnologia na Educação. SENAC, 2023. http://dx.doi.org/10.61917/2764-684x.2023.059.
Texto completoSilva, Jhessica, Alef Ferreira, Diego Moreira, Gabriel Santos, Gustavo Bonil, João Gondim, Luiz Pereira et al. "Avaliação de Ferramentas de Ética no Levantamento de Considerações Éticas de Modelos de Linguagem em Português". En Conferência Latino-Americana de Ética em Inteligência Artificial, 61–64. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/laai-ethics.2024.32452.
Texto completoTerán, Héctor. "La implementación de la Inteligencia Artificial en la enseñanza de la programación. Un estudio sobre el uso ético de ChatGPT en el aula". En Ingeniería para transformar territorios. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2023. http://dx.doi.org/10.26507/paper.2768.
Texto completoUribe, Lorena. "Integración de Inteligencia Artificial en la gestión de tecnologías de la información: un enfoque aplicado en el desarrollo empresarial". En Ingeniería: una transición hacia el futuro, 1–10. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2024. http://dx.doi.org/10.26507/paper.3761.
Texto completoVasconcelos, Eduardo Silva, Leandro Aureliano da Silva, Débora Vasconcelos Melo, Adriano Dawison de Lima, Luiz Fernando Ribeiro de Paiva y Cleiton Silvano Goulart. "Inteligencia artificial en la gestión agrícola: Uso de modelos de bosque aleatorio para la predicción de producción y reserva de semillas en Brasil". En I Seven Agricultural Sciences Congress. Seven Congress, 2024. http://dx.doi.org/10.56238/icongresssevenagriculturalsciences-010.
Texto completoMarín Idárraga, Diego Alberto y Alexandra E. Duarte Castillo. "Estado del arte sobre Supply Chain Management SCM en el sector cafetero colombiano". En Ingeniería: una transición hacia el futuro, 1–11. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2024. http://dx.doi.org/10.26507/paper.3605.
Texto completoInformes sobre el tema "IA de confiance"
Yousefi, Farzaneh y Marie-Pierre Gagnon. L’intelligence artificielle (IA) pour la promotion de la santé et la réduction de la maladie : synthèse des connaissances. Observatoire international sur les impacts sociétaux de l'intelligence artificielle et du numérique, julio de 2024. http://dx.doi.org/10.61737/pjld3032.
Texto completoCorbett, Jaqueline y Chris Emmanuel Tchatchouang Wanko. Les enjeux transversaux au déploiement et à l'utilisation de l'IA au sein du système professionnel québécois. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, marzo de 2022. http://dx.doi.org/10.61737/zfuw6688.
Texto completoNovoa-Jaso, María Fernanda, Aurken Sierra-Iso, Roncesvalles Labiano-Juangarcía y Alfonso Vara-Miguel. Digital News Report España 2024. Calidad periodística y pluralidad: claves para la confianza informativa en la era de la inteligencia artificial (IA). Servicio de Publicaciones de la Universidad de Navarra, 2024. http://dx.doi.org/10.15581/019.2024.
Texto completo