Artículos de revistas sobre el tema "Hypertrophy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hypertrophy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Maron, Barry J. y Carolyn Y. Ho. "Hypertrophic Cardiomyopathy Without Hypertrophy". JACC: Cardiovascular Imaging 2, n.º 1 (enero de 2009): 65–68. http://dx.doi.org/10.1016/j.jcmg.2008.09.008.
Texto completoStrøm, Claes C., Mogens Kruhøffer, Steen Knudsen, Frank Stensgaard-Hansen, Thomas E. N. Jonassen, Torben F. Ørntoft, Stig Haunsø y Søren P. Sheikh. "Identification of a Core Set of Genes That Signifies Pathways Underlying Cardiac Hypertrophy". Comparative and Functional Genomics 5, n.º 6-7 (2004): 459–70. http://dx.doi.org/10.1002/cfg.428.
Texto completoLi, Wei-ming, Yi-fan Zhao, Guo-fu Zhu, Wen-hui Peng, Meng-yun Zhu, Xue-jing Yu, Wei Chen, Da-chun Xu y Ya-wei Xu. "Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload". Clinical Science 131, n.º 2 (23 de diciembre de 2016): 141–54. http://dx.doi.org/10.1042/cs20160664.
Texto completoLu, Peilei, Danyu Zhang, Fan Ding, Jialu Ma, Yang K. Xiang y Meimi Zhao. "Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis". Cells 12, n.º 12 (19 de junio de 2023): 1667. http://dx.doi.org/10.3390/cells12121667.
Texto completoSavchenko, M. I., YU R. Kovalev y A. P. Kuchinskiy. "HYPERTROPHIC CARDIOMYOPATHY: FIBROSIS OR HYPERTROPHY". "Arterial’naya Gipertenziya" ("Arterial Hypertension") 19, n.º 2 (28 de abril de 2013): 148–55. http://dx.doi.org/10.18705/1607-419x-2013-19-2-148-155.
Texto completoAbdelbaki, Mourad, A. Boureghda y N. Hanifi. "Comparative Research Between Sportsman's Heart and Hypertrophic Cardiomyopathy". International Journal of Innovative Research in Medical Science 9, n.º 01 (10 de enero de 2024): 24–27. http://dx.doi.org/10.23958/ijirms/vol09-i01/1802.
Texto completoMorita, Kozo, Takeshi Miyamoto, Nobuyuki Fujita, Yoshiaki Kubota, Keisuke Ito, Keiyo Takubo, Kana Miyamoto et al. "Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification". Journal of Experimental Medicine 204, n.º 7 (18 de junio de 2007): 1613–23. http://dx.doi.org/10.1084/jem.20062525.
Texto completoGu, Wei, Yutong Cheng, Su Wang, Tao Sun y Zhizhong Li. "PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2". Cardiovascular Toxicology 21, n.º 6 (21 de febrero de 2021): 451–61. http://dx.doi.org/10.1007/s12012-021-09639-0.
Texto completoIgnatenko, G. I., G. G. Taradin y T. E. Kugler. "Specifics of Left Ventricular Hypertrophy and Characteristic of Phenotypic Variants in Patients with Hypertrophic Cardiomyopathy". Russian Archives of Internal Medicine 13, n.º 4 (16 de agosto de 2023): 282–93. http://dx.doi.org/10.20514/2226-6704-2023-13-4-282-293.
Texto completoVilleneuve, C., A. Caudrillier, C. Ordener, N. Pizzinat, A. Parini y J. Mialet-Perez. "Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells". American Journal of Physiology-Heart and Circulatory Physiology 297, n.º 2 (agosto de 2009): H821—H828. http://dx.doi.org/10.1152/ajpheart.00345.2009.
Texto completoNosenko, N. M., D. V. Shchehlov, M. Yu Mamonova y Ya E. Kudelskyi. "Left ventricular hypertrophy: differential diagnosis". Endovascular Neuroradiology 30, n.º 4 (11 de marzo de 2020): 49–58. http://dx.doi.org/10.26683/2304-9359-2019-4(30)-49-58.
Texto completoOlimovna, Oripova Ozoda. "CHARACTERISTICS OF PATHOMORPHOLOGICAL CHANGES IN HYPERTROPHIC CARDIOMYOPATHY". American Journal Of Biomedical Science & Pharmaceutical Innovation 4, n.º 6 (1 de junio de 2024): 70–78. http://dx.doi.org/10.37547/ajbspi/volume04issue06-10.
Texto completoRaghunathan, Suchi, Ramesh K. Goyal y Bhoomika M. Patel. "Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy". Canadian Journal of Physiology and Pharmacology 95, n.º 3 (marzo de 2017): 260–67. http://dx.doi.org/10.1139/cjpp-2016-0542.
Texto completoRiedl, Moritz, Christina Witzmann, Matthias Koch, Siegmund Lang, Maximilian Kerschbaum, Florian Baumann, Werner Krutsch, Denitsa Docheva, Volker Alt y Christian Pfeifer. "Attenuation of Hypertrophy in Human MSCs via Treatment with a Retinoic Acid Receptor Inverse Agonist". International Journal of Molecular Sciences 21, n.º 4 (20 de febrero de 2020): 1444. http://dx.doi.org/10.3390/ijms21041444.
Texto completoNikkholgh, Ahad, Fatemeh Tavakoli, Nasrin Alborzi y Fatemeh Araste. "Vitamin D Attenuates Cardiac Hypertrophy in Rats through mRNA Regulation of Interleukin-6 and Its Receptor". Research in Cardiovascular Medicine 12, n.º 4 (2023): 123–28. http://dx.doi.org/10.4103/rcm.rcm_60_23.
Texto completoYan, Xiaoying, Ran Zhao, Xiaorong Feng, Jingzhou Mu, Ying Li, Yue Chen, Chunmei Li et al. "Sialyltransferase7A promotes angiotensin II-induced cardiomyocyte hypertrophy via HIF-1α-TAK1 signalling pathway". Cardiovascular Research 116, n.º 1 (11 de marzo de 2019): 114–26. http://dx.doi.org/10.1093/cvr/cvz064.
Texto completoBazgir, Farhad, Julia Nau, Saeideh Nakhaei-Rad, Ehsan Amin, Matthew J. Wolf, Jeffry J. Saucerman, Kristina Lorenz y Mohammad Reza Ahmadian. "The Microenvironment of the Pathogenesis of Cardiac Hypertrophy". Cells 12, n.º 13 (4 de julio de 2023): 1780. http://dx.doi.org/10.3390/cells12131780.
Texto completoGallo, Simona, Annapia Vitacolonna, Alessandro Bonzano, Paolo Comoglio y Tiziana Crepaldi. "ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy". International Journal of Molecular Sciences 20, n.º 9 (1 de mayo de 2019): 2164. http://dx.doi.org/10.3390/ijms20092164.
Texto completoSu, Dongmei, Sun Jing, Lina Guan, Qian Li, Huiling Zhang, Xiaobo Gao y Xu Ma. "Role of Nodal–PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy". Biochemistry and Cell Biology 92, n.º 3 (junio de 2014): 183–90. http://dx.doi.org/10.1139/bcb-2013-0124.
Texto completoHernández Quiles, C. y L. M. Beltrán Romero. "Hypertrophic cardiomyopathy: Beyond left ventricular hypertrophy". Revista Clínica Española (English Edition) 221, n.º 6 (junio de 2021): 343–44. http://dx.doi.org/10.1016/j.rceng.2020.03.005.
Texto completoSUN, XUE-FENG, QING-JUN WU, YA-LAN BI, YONG HOU, MENG-TAO LI, WEN ZHANG, XUAN ZHANG et al. "Primary Hypertrophic Osteoarthropathy with Gastric Hypertrophy". Journal of Rheumatology 38, n.º 5 (mayo de 2011): 959–60. http://dx.doi.org/10.3899/jrheum.101077.
Texto completoSilver, Meredith M. y Malcolm D. Silver. "Left ventricular hypertrophy versus hypertrophic cardlomyopathy". Journal of Pediatrics 121, n.º 3 (septiembre de 1992): 500–501. http://dx.doi.org/10.1016/s0022-3476(05)81824-4.
Texto completoBorer, Jeffrey S. "Left ventricular hypertrophy in hypertrophic cardiomyopathy". Journal of the American College of Cardiology 44, n.º 2 (julio de 2004): 406–8. http://dx.doi.org/10.1016/j.jacc.2004.04.023.
Texto completoXie, Xin, Hai-Lian Bi, Song Lai, Yun-Long Zhang, Nan Li, Hua-Jun Cao, Ling Han, Hong-Xia Wang y Hui-Hua Li. "The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation". Science Advances 5, n.º 5 (mayo de 2019): eaau0495. http://dx.doi.org/10.1126/sciadv.aau0495.
Texto completoGao, Si, Xue-ping Liu, Li-hua Wei, Jing Lu y Peiqing Liu. "Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy". Canadian Journal of Physiology and Pharmacology 96, n.º 4 (abril de 2018): 352–58. http://dx.doi.org/10.1139/cjpp-2017-0282.
Texto completoZhang, Yan, Qiang Da, Siyi Cao, Ke Yan, Zhiguang Shi, Qing Miao, Chen Li et al. "HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression". Circulation 144, n.º 8 (24 de agosto de 2021): 638–54. http://dx.doi.org/10.1161/circulationaha.120.051094.
Texto completoLiu, Yang, Shuang Li, Zhanqun Gao, Shuangjia Li, Qingyun Tan, Yanmei Li, Dongwei Wang y Qingdong Wang. "Indoleamine 2,3-Dioxygenase 1 (IDO1) Promotes Cardiac Hypertrophy via a PI3K-AKT-mTOR-Dependent Mechanism". Cardiovascular Toxicology 21, n.º 8 (21 de mayo de 2021): 655–68. http://dx.doi.org/10.1007/s12012-021-09657-y.
Texto completoLi, Yu, Bo He, Chao Zhang, Yanji He, Tianyang Xia y Chunyu Zeng. "Naringenin Attenuates Isoprenaline-Induced Cardiac Hypertrophy by Suppressing Oxidative Stress through the AMPK/NOX2/MAPK Signaling Pathway". Nutrients 15, n.º 6 (9 de marzo de 2023): 1340. http://dx.doi.org/10.3390/nu15061340.
Texto completoTang, Xin, Lihong Pan, Shuang Zhao, Feiyue Dai, Menglin Chao, Hong Jiang, Xuesong Li et al. "SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)–Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation". Circulation 141, n.º 12 (24 de marzo de 2020): 984–1000. http://dx.doi.org/10.1161/circulationaha.119.042336.
Texto completoLiu, Yao-Lung, Chiu-Ching Huang, Chiz-Chung Chang, Che-Yi Chou, Shih-Yi Lin, I.-Kuan Wang, Dennis Jine-Yuan Hsieh, Gwo-Ping Jong, Chih-Yang Huang y Chao-Min Wang. "Hyperphosphate-Induced Myocardial Hypertrophy through the GATA-4/NFAT-3 Signaling Pathway Is Attenuated by ERK Inhibitor Treatment". Cardiorenal Medicine 5, n.º 2 (2015): 79–88. http://dx.doi.org/10.1159/000371454.
Texto completoLi, Yuhao, Yoshihiko Saito, Koichiro Kuwahara, Xianglu Rong, Ichiro Kishimoto, Masaki Harada, Yuichiro Adachi et al. "Guanylyl Cyclase-A Inhibits Angiotensin II Type 2 Receptor-Mediated Pro-Hypertrophic Signaling in the Heart". Endocrinology 150, n.º 8 (16 de abril de 2009): 3759–65. http://dx.doi.org/10.1210/en.2008-1353.
Texto completoGoodman, Craig A., Man Hing Miu, John W. Frey, Danielle M. Mabrey, Hannah C. Lincoln, Yejing Ge, Jie Chen y Troy A. Hornberger. "A Phosphatidylinositol 3-Kinase/Protein Kinase B-independent Activation of Mammalian Target of Rapamycin Signaling Is Sufficient to Induce Skeletal Muscle Hypertrophy". Molecular Biology of the Cell 21, n.º 18 (15 de septiembre de 2010): 3258–68. http://dx.doi.org/10.1091/mbc.e10-05-0454.
Texto completoWehbe, Nadine, Suzanne Nasser, Gianfranco Pintus, Adnan Badran, Ali Eid y Elias Baydoun. "MicroRNAs in Cardiac Hypertrophy". International Journal of Molecular Sciences 20, n.º 19 (23 de septiembre de 2019): 4714. http://dx.doi.org/10.3390/ijms20194714.
Texto completoJohansson, Markus, Benyapa Tangruksa, Sepideh Heydarkhan-Hagvall, Anders Jeppsson, Peter Sartipy y Jane Synnergren. "Data Mining Identifies CCN2 and THBS1 as Biomarker Candidates for Cardiac Hypertrophy". Life 12, n.º 5 (12 de mayo de 2022): 726. http://dx.doi.org/10.3390/life12050726.
Texto completoPreveden, Andrej, Mirna Usorac, Mirko Todic, Mihaela Preveden, Miodrag Golubovic y Lazar Velicki. "Electrocardiographic features of patients with hypertrophic cardiomyopathy". Medical review 75, n.º 1-2 (2022): 56–61. http://dx.doi.org/10.2298/mpns2202056p.
Texto completoPrinz, Christian, Lothar Faber, Dieter Horstkotte, Hermann Körperich, Axel Moysich, Nikolaus Haas, Deniz Kececioglu y Kai Thorsten Laser. "Evaluation of left ventricular torsion in children with hypertrophic cardiomyopathy". Cardiology in the Young 24, n.º 2 (7 de febrero de 2013): 245–52. http://dx.doi.org/10.1017/s104795111300005x.
Texto completoKhatoon, Razia, Swaimanti Sarkar, Aindrila Chattopadhyay y Debasish Bandyopadhyay. "The cardioprotective potential of melatonin on cardiac hypertrophy: A mechanistic overview". Melatonin Research 6, n.º 3 (30 de septiembre de 2023): 313–44. http://dx.doi.org/10.32794/mr112500157.
Texto completoQuddus, Sharmin, Tapati Mandal, Sharmin Reza, Nasreen Sultana, Rahima Parveen, Urnus Islam y Sadia Sultana. "SPECT Myocardial Perfusion Imaging in the Diagnosis of Apical Hypertrophic Cardiomyopathy- Case Series and Literature Review". Bangladesh Journal of Nuclear Medicine 27, n.º 1 (23 de junio de 2024): 100–106. http://dx.doi.org/10.3329/bjnm.v27i1.71520.
Texto completoHu, Chengyun, Feibiao Dai, Jiawu Wang, Lai Jiang, Di Wang, Jie Gao, Jun Huang et al. "Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice". Oxidative Medicine and Cellular Longevity 2022 (29 de enero de 2022): 1–12. http://dx.doi.org/10.1155/2022/5067544.
Texto completoWang, Yao-Sheng, Jing Zhou, Kui Hong, Xiao-Shu Cheng y Yi-Gang Li. "MicroRNA-223 Displays a Protective Role Against Cardiomyocyte Hypertrophy by Targeting Cardiac Troponin I-Interacting Kinase". Cellular Physiology and Biochemistry 35, n.º 4 (2015): 1546–56. http://dx.doi.org/10.1159/000373970.
Texto completoLysova, I. V. y T. P. Senatorova. "Treatment of hypertrophic gingivitis with laser radiation". Kazan medical journal 69, n.º 2 (15 de abril de 1988): 122. http://dx.doi.org/10.17816/kazmj97214.
Texto completoGeraets, Ilvy M. E., Will A. Coumans, Agnieszka Strzelecka, Patrick Schönleitner, Gudrun Antoons, Francesco Schianchi, Myrthe M. A. Willemars et al. "Metabolic Interventions to Prevent Hypertrophy-Induced Alterations in Contractile Properties In Vitro". International Journal of Molecular Sciences 22, n.º 7 (31 de marzo de 2021): 3620. http://dx.doi.org/10.3390/ijms22073620.
Texto completoBrown, Brittany F., Anita Quon, Jason R. B. Dyck y Joseph R. Casey. "Carbonic anhydrase II promotes cardiomyocyte hypertrophy". Canadian Journal of Physiology and Pharmacology 90, n.º 12 (diciembre de 2012): 1599–610. http://dx.doi.org/10.1139/y2012-142.
Texto completoLi, Peng-Long, Hui Liu, Guo-Peng Chen, Ling Li, Hong-Jie Shi, Hong-Yu Nie, Zhen Liu et al. "STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy". Hypertension 76, n.º 4 (octubre de 2020): 1219–30. http://dx.doi.org/10.1161/hypertensionaha.120.14752.
Texto completoZhang, Haifeng, Shanshan Li, Qiulian Zhou, Qi Sun, Shutong Shen, Yanli Zhou, Yihua Bei y Xinli Li. "Qiliqiangxin Attenuates Phenylephrine-Induced Cardiac Hypertrophy through Downregulation of MiR-199a-5p". Cellular Physiology and Biochemistry 38, n.º 5 (2016): 1743–51. http://dx.doi.org/10.1159/000443113.
Texto completoYun, Ui Jeong y Dong Kwon Yang. "Sinapic Acid Inhibits Cardiac Hypertrophy via Activation of Mitochondrial Sirt3/SOD2 Signaling in Neonatal Rat Cardiomyocytes". Antioxidants 9, n.º 11 (21 de noviembre de 2020): 1163. http://dx.doi.org/10.3390/antiox9111163.
Texto completoBi, Hai-Lian, Xiao-Li Zhang, Yun-Long Zhang, Xin Xie, Yun-Long Xia, Jie Du y Hui-Hua Li. "The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor". Science Advances 6, n.º 16 (abril de 2020): eaax4826. http://dx.doi.org/10.1126/sciadv.aax4826.
Texto completoHaq, Syed, Gabriel Choukroun, Zhao Bin Kang, Hardeep Ranu, Takashi Matsui, Anthony Rosenzweig, Jeffrey D. Molkentin et al. "Glycogen Synthase Kinase-3β Is a Negative Regulator of Cardiomyocyte Hypertrophy". Journal of Cell Biology 151, n.º 1 (2 de octubre de 2000): 117–30. http://dx.doi.org/10.1083/jcb.151.1.117.
Texto completoKang, Peter M., Patrick Yue, Zhilin Liu, Oleg Tarnavski, Natalya Bodyak y Seigo Izumo. "Alterations in apoptosis regulatory factors during hypertrophy and heart failure". American Journal of Physiology-Heart and Circulatory Physiology 287, n.º 1 (julio de 2004): H72—H80. http://dx.doi.org/10.1152/ajpheart.00556.2003.
Texto completoChen, Jian-Kang, Jianchun Chen, George Thomas, Sara C. Kozma y Raymond C. Harris. "S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy". American Journal of Physiology-Renal Physiology 297, n.º 3 (septiembre de 2009): F585—F593. http://dx.doi.org/10.1152/ajprenal.00186.2009.
Texto completo