Literatura académica sobre el tema "Hypertrophy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hypertrophy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hypertrophy"
Maron, Barry J. y Carolyn Y. Ho. "Hypertrophic Cardiomyopathy Without Hypertrophy". JACC: Cardiovascular Imaging 2, n.º 1 (enero de 2009): 65–68. http://dx.doi.org/10.1016/j.jcmg.2008.09.008.
Texto completoStrøm, Claes C., Mogens Kruhøffer, Steen Knudsen, Frank Stensgaard-Hansen, Thomas E. N. Jonassen, Torben F. Ørntoft, Stig Haunsø y Søren P. Sheikh. "Identification of a Core Set of Genes That Signifies Pathways Underlying Cardiac Hypertrophy". Comparative and Functional Genomics 5, n.º 6-7 (2004): 459–70. http://dx.doi.org/10.1002/cfg.428.
Texto completoLi, Wei-ming, Yi-fan Zhao, Guo-fu Zhu, Wen-hui Peng, Meng-yun Zhu, Xue-jing Yu, Wei Chen, Da-chun Xu y Ya-wei Xu. "Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload". Clinical Science 131, n.º 2 (23 de diciembre de 2016): 141–54. http://dx.doi.org/10.1042/cs20160664.
Texto completoLu, Peilei, Danyu Zhang, Fan Ding, Jialu Ma, Yang K. Xiang y Meimi Zhao. "Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis". Cells 12, n.º 12 (19 de junio de 2023): 1667. http://dx.doi.org/10.3390/cells12121667.
Texto completoSavchenko, M. I., YU R. Kovalev y A. P. Kuchinskiy. "HYPERTROPHIC CARDIOMYOPATHY: FIBROSIS OR HYPERTROPHY". "Arterial’naya Gipertenziya" ("Arterial Hypertension") 19, n.º 2 (28 de abril de 2013): 148–55. http://dx.doi.org/10.18705/1607-419x-2013-19-2-148-155.
Texto completoAbdelbaki, Mourad, A. Boureghda y N. Hanifi. "Comparative Research Between Sportsman's Heart and Hypertrophic Cardiomyopathy". International Journal of Innovative Research in Medical Science 9, n.º 01 (10 de enero de 2024): 24–27. http://dx.doi.org/10.23958/ijirms/vol09-i01/1802.
Texto completoMorita, Kozo, Takeshi Miyamoto, Nobuyuki Fujita, Yoshiaki Kubota, Keisuke Ito, Keiyo Takubo, Kana Miyamoto et al. "Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification". Journal of Experimental Medicine 204, n.º 7 (18 de junio de 2007): 1613–23. http://dx.doi.org/10.1084/jem.20062525.
Texto completoGu, Wei, Yutong Cheng, Su Wang, Tao Sun y Zhizhong Li. "PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2". Cardiovascular Toxicology 21, n.º 6 (21 de febrero de 2021): 451–61. http://dx.doi.org/10.1007/s12012-021-09639-0.
Texto completoIgnatenko, G. I., G. G. Taradin y T. E. Kugler. "Specifics of Left Ventricular Hypertrophy and Characteristic of Phenotypic Variants in Patients with Hypertrophic Cardiomyopathy". Russian Archives of Internal Medicine 13, n.º 4 (16 de agosto de 2023): 282–93. http://dx.doi.org/10.20514/2226-6704-2023-13-4-282-293.
Texto completoVilleneuve, C., A. Caudrillier, C. Ordener, N. Pizzinat, A. Parini y J. Mialet-Perez. "Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells". American Journal of Physiology-Heart and Circulatory Physiology 297, n.º 2 (agosto de 2009): H821—H828. http://dx.doi.org/10.1152/ajpheart.00345.2009.
Texto completoTesis sobre el tema "Hypertrophy"
Bloem, Liezl Margaretha. "Sarcomeric modifiers of hypertrophy in hypertrophic cardiomyopathy (HCM)". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/79795.
Texto completoENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) is an independent predictor of cardiovascular morbidity and allcause mortality. Significantly, it is considered a modifiable cardiovascular risk factor as its regression increases overall survival and reduces the frequency of adverse cardiac events. A clear understanding of LVH pathogenesis is thus imperative to facilitate improved risk stratification and therapeutic intervention. Hypertrophic cardiomyopathy (HCM), an inherited cardiac disorder, is a model disease for elucidating the molecular mechanisms underlying LVH development. LVH, in the absence of increased external loading conditions, is its quintessential clinical feature, resulting from mutations in genes encoding sarcomeric proteins. The LVH phenotype in HCM exhibits marked variability even amongst family members who carry the same disease-causing mutation. Phenotypic expression is thus determined by the causal mutation and additional determinants including the environment, epigenetics and modifier genes. Thus far, factors investigated as potential hypertrophy modifiers in HCM have been relatively removed from the primary stimulus for LVH; and the few studies that have been replicated yielded inconsistent results. We hypothesized that the factors that closely interact with the primary stimulus of faulty sarcomeric functioning, have a greater capacity to modulate it, and ultimately the LVH phenotype in HCM. Plausible candidate modifiers would include factors relating to the structure or function of the sarcomere, including known HCM-causal genes; and the enzymes that function in sarcomere-based energetics. Indeed, the literature highlights the relevance of sarcomeric proteins, Ca2+-handling and myocardial energetics in the development of LVH in HCM. This study, therefore, set out to evaluate the hypertrophy-modifying capacity of such factors by means of family-based genetic association testing in 27 South African HCM families in which one of three unique HCM-causing founder mutations segregates. Moreover, the single and combined effects of 76 variants within 26 candidate genes encoding sarcomeric or sarcomere-associated proteins were investigated. The study identified a modifying role in the development of hypertrophy in HCM for each of the candidate genes investigated with the exception of the metabolic protein-encoding gene, PRKAG1. More specifically, single variant association analyses identified a modifying role for variants within the genes MYH7, TPM1 and MYL2, which encode proteins of the sarcomere, as well as the genes CPT1B, CKM, ALDOA and PRKAB2, which encode metabolic proteins. Haplotype-based association analyses identified combined modifying effects for variants within the genes ACTC, TPM1, MYL2, MYL3 and MYBPC3, which encode proteins of the sarcomere, as well as the genes CD36, PDK4, CKM, PFKM, PPARA, PPARG, PGC1A, PRKAA2, PRKAG2 and PRKAG3, which encode metabolic proteins. Moreover, a number of variants and haplotypes showed statistically significant differences in effect amongst the three HCM founder mutation groups. The HCM-modifier genes identified were prioritised for future studies according to the number of significant results obtained for the four tests of association performed. The genes TPM1 and MYBPC3, which encode sarcomeric proteins, as well as the genes PFKM and PRKAG2, which encode metabolic proteins, were identified as stronger candidates for future studies as they delivered multiple significant results for various statistical tests. This study makes a novel contribution to the field of hypertrophy research as it tested the hypothesis that structural or energy-related factors located within the sarcomere may act as modifiers of cardiac hypertrophy in HCM, and succeeded in identifying a modifying role for many of the candidate genes selected. The significant results include substantial single and within-genecontext variant effects; and identified sizeable variation in the risk of developing LVH owing to the compound effect of the modifier and the individual founder mutations. Collectively, these findings enhance the current understanding of genotype/phenotype correlations and may, as consequence, improve patient risk stratification and choice of treatment. Moreover, these findings emphasize the potential for modulation of disease by further elucidation of some of the avenues identified.
AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) is ‘n onafhanklike voorspeller van kardiovaskulêre morbiditeit en van mortaliteit weens alle oorsake. Van belang is dat dit ‘n wysigbare kardiovaskulêre risiko faktor is, aangesien die afname daarvan algehele oorlewing verhoog en die frekwensie van nadelige kardiale voorvalle verlaag. ‘n Duidelike begrip van LVH patogenese is dus noodsaaklik om verbeterde risiko stratifikasie en terapeutiese intervensie te fasiliteer. Hipertrofiese kardiomiopatie (HKM), ‘n oorerflike hart-siekte, is ‘n model-siekte vir die uitpluis van die molekulêre meganismes onderliggend aan die ontwikkeling van LVH. LVH, in die afwesigheid van verhoogde eksterne lading, is die kern kliniese simptoom van HKM en die gevolg van mutasies in die gene wat kodeer vir sarkomeriese proteïene. Die LVH fenotiepe in HKM toon merkbare veranderlikheid selfs in familie-lede wat dieselfde siekte-veroorsakende mutasie dra. Die fenotiepe word dus bepaal deur die siekte-veroorsakende mutasie asook addisionele determinante insluitend die omgewing, epigenetika en modifiserende gene. Potensiële hipertrofie-modifiseerders wat tot dusver bestudeer is, is betreklik verwyder van die primêre stimulus vir LVH en die paar studies wat gerepliseer is, het teenstrydige resultate gelewer. Ons hipoteseer dat die faktore wat in noue interaksie met die primêre stimulus van foutiewe sarkomeriese funksionering is, ‘n groter kapasitieit het om dit en uiteindelik die LVH fenotiepe in HKM, te moduleer. Aanneemlike kandidaat-modifiseerders sou insluit faktore wat betrekking het tot die struktuur en funksie van die sarkomeer insluitend HKM-oorsaaklike gene en die ensieme wat funksioneer in sarkomeer-gebaseerde energetika. Die literatuur beklemtoon inderdaad die relevansie van sarkomeriese proteïene, Ca2+-hantering en miokardiese energetika in die ontwikkeling van LVM in HKM. Hierdie studie het beoog om die hipertrofie-modifiserende kapasiteit van sulke faktore te evalueer deur middel van familie-gebaseerde genetiese assosiasie toetse in 27 Suid-Afrikaanse HKM families waarin een van drie unieke HKM-stigter mutasies segregeer. Verder was die enkel en gekombineerde effekte van 76 variante binne 26 kandidaat gene wat kodeer vir sarkomeer en sarkomeer-geassosieerde proteïene, ondersoek. Hierdie studie het ‘n modifiserende rol in die ontwikkeling van hipertrofie in HKM geïdentifiseer vir elk van die kandidaat gene wat ondersoek is, met uitsluiting van die PRKAG1, wat kodeer vir ‘n metaboliese proteïen. Meer spesifiek, enkel variant assosiasie analises het ‘n modifiserende rol geïdentifiseer vir variante in die gene MYH7, TPM1 en MYL2, wat kodeer vir sarkomeriese proteïene, asook die gene CPT1B, CKM, ALDOA en PRKAB2, wat kodeer vir metabolise proteïene. Haplotipe-gebaseerde assosiasie-analises het gekombineerde modifiserende effekte geïdentifiseer vir variante in die gene ACTC, TPM1, MYL2, MYL3 en MYBPC3, wat kodeer vir strukturele proteïene van die sarkomeer asook die gene CD36, PDK4, CKM, PFKM, PPARA, PPARG, PGC1A, PRKAA2, PRKAG2 en PRKAG3, wat kodeer vir metabolise proteïene. Verder het ‘n aantal variante en haplotipes statisties betekenisvolle verskille in effek tussen die drie HKM-stigter mutasie groepe getoon. Die HKM-modifiserende gene wat geïdentifiseer is, is verder geprioritiseer vir toekomstige studies volgens die aantal beduidende resultate wat vir die vier assosiasie toetse verkry is. Die gene TPM1 and MYBPC3, wat kodeer vir sarkomeriese proteïene, asook die gene PFKM and PRKAG2, wat kodeer vir metaboliese proteïene, is geïdentifiseer as sterker kandidate vir verdere studies omdat veelvuldige beduidende resultate vir die verskeie statistiese toetse deur hulle gelewer is. Hierdie studie maak ‘n nuwe bydrae tot die veld van hipertrofie navorsing omdat dit die hipotese dat strukturele en energie-verwante faktore, wat binne die sarkomeer geposisioneer is, potensieel as modifiseerders van kardiale hipertropfie in HKM kan optree, ondersoek het. Dit slaag ook daarin om ‘n modifiserende rol vir baie van die geselekteerde kandidaatgene te identifiseer. Die beduidende resultate sluit in aansienlike enkel en binne-geen-konteks variant-effekte en aansienlike variasie in die risiko vir LVH ontwikkeling verskuldig aan die gekombineerde effek van modifiseerder en individuele stigter mutasies. Gesamentlik verbeter hierdie bevindinge die huidige begrip van genotipe/fenotipe korrelasies en dit mag tot gevolg hê verbeterde pasiënt risiko stratifikasie en keuse van behandeling. Verder beklemtoon hierdie bevindinge die potensiaal vir siekte modulering deur verdere uitpluis van sekere van hierdie geïdentifiseerde navorsingsrigtings.
National Research Foundation
Dr. Paul van Helden
Stellenbosch University
Soana, valentina. "Ornamental Hypertrophy". Thesis, KTH, Arkitektur, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-35924.
Texto completoFerreira, Linda. "A Molecular Analysis of Cardiac Hypertrophy". Thesis, Griffith University, 2007. http://hdl.handle.net/10072/367757.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith University. School of Medical Science.
Griffith Health
Full Text
Paternostro, Giovanni. "Biochemical studies of cardiac hypertrophy". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337538.
Texto completoClarke, Samantha Jayne. "Biochemical adaptations in cardiac hypertrophy". Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395503.
Texto completoTsang, K. K. "Screening for benign prostatic hypertrophy". Thesis, University of Edinburgh, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.663068.
Texto completoRisto, Morten. "Modelling hypertrophy in dystrophic cardiomyocytes". Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3402.
Texto completoSchans, Veerle Anna Maria van de. "Wnt signaling and cardiac hypertrophy". [Maastricht] : Maastricht : [Maastricht University] ; University Library, Universiteit Maastricht [host], 2009. http://arno.unimaas.nl/show.cgi?fid=14684.
Texto completoStone, Michael H. "Mechanisms of Skeletal Muscle Hypertrophy". Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etsu-works/4532.
Texto completoStone, Michael H. "Mechanisms of Skeletal Muscle Hypertrophy". Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etsu-works/4544.
Texto completoLibros sobre el tema "Hypertrophy"
J, Sheridan Desmond, ed. Left ventricular hypertrophy. London: Churchill Livingstone, 1998.
Buscar texto completo1929-, Ison-Franklin Eleanor L., Sandler Harold 1929- y Hawthorne Edward William 1922-1986, eds. Myocardial hypertrophy: A symposium. Washington, D.C: Howard University Press, 1991.
Buscar texto completoVan der Wall, Ernst E., Arnoud Van der Laarse, Babette M. Pluim y Albert V. G. Bruschke. Left Ventricular Hypertrophy. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4279-3.
Texto completoSever, Peter S. Left ventricular hypertrophy. London: Current Medical Literature, 1996.
Buscar texto completoDhalla, Naranjan S., Grant N. Pierce, Vincenzo Panagia y Robert E. Beamish, eds. Heart Hypertrophy and Failure. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4613-1237-6.
Texto completoAdami, J. George. Notes upon cardiac hypertrophy. [S.l: s.n., 1985.
Buscar texto completoB, Swynghedauw, ed. Cardiac hypertrophy and failure. London: Libbey, 1990.
Buscar texto completoS, Dhalla Naranjan y International Conference on Heart Failure (1994 : Winnipeg, Man.), eds. Heart hypertrophy and failure. Boston: Kluwer, 1995.
Buscar texto completoWorld Heart Congress (17th 2001 Winnipeg, Man.). Signal transduction and cardiac hypertrophy. Editado por Dhalla Naranjan S. Boston: Kluwer Academic Pub., 2003.
Buscar texto completoMcVary, Kevin T. Management of Benign Prostatic Hypertrophy. New Jersey: Humana Press, 2003. http://dx.doi.org/10.1385/1592596444.
Texto completoCapítulos de libros sobre el tema "Hypertrophy"
Capinera, John L., Thomas O. Crist, John B. Heppner, Minos E. Tzanakakis, Severiano F. Gayubo, Aurélien Tartar, Pauline O. Lawrence et al. "Hypertrophy". En Encyclopedia of Entomology, 1901. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6359-6_1457.
Texto completoDePiero, Theslee Joy. "Hypertrophy". En Encyclopedia of Clinical Neuropsychology, 1760. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_459.
Texto completoRosenberg, Leah. "Hypertrophy". En Encyclopedia of Behavioral Medicine, 1123. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39903-0_1269.
Texto completoOrbell, Sheina, Havah Schneider, Sabrina Esbitt, Jeffrey S. Gonzalez, Jeffrey S. Gonzalez, Erica Shreck, Abigail Batchelder et al. "Hypertrophy". En Encyclopedia of Behavioral Medicine, 1013–14. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_1269.
Texto completoDePiero, Theslee Joy. "Hypertrophy". En Encyclopedia of Clinical Neuropsychology, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_459-2.
Texto completoSainburg, Robert L., Andrew L. Clark, George E. Billman, Zachary J. Schlader, Toby Mündel, Kevin Milne, Earl G. Noble et al. "Hypertrophy". En Encyclopedia of Exercise Medicine in Health and Disease, 424. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2514.
Texto completoVecht, Romeo, Nicholas Peters y Micheal A. Gatzoulis. "Hypertrophy". En ECG Diagnosis in Clinical Practice, 169–76. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84800-312-5_5.
Texto completoDePiero, Theslee Joy. "Hypertrophy". En Encyclopedia of Clinical Neuropsychology, 1284. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_459.
Texto completoMetze, Dieter, Vanessa F. Cury, Ricardo S. Gomez, Luiz Marco, Dror Robinson, Eitan Melamed, Alexander K. C. Leung et al. "Hypertrophy". En Encyclopedia of Molecular Mechanisms of Disease, 955–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_9227.
Texto completoMallion, Jean-Michel, Jean-Philippe Baguet, Jean-Philippe Siché, F. Tremel y R. De Gaudemaris. "Left Ventricular Hypertrophy and Arterial Hypertrophy". En Advances in Experimental Medicine and Biology, 123–33. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5385-4_14.
Texto completoActas de conferencias sobre el tema "Hypertrophy"
Al-Shamasi, Al-Anood, Meram Elsayed, Nabeel Abdulrahman, Jensa Joseph y Fatima Mraiche. "The Cardiovascular benefits of Empagliflozin, a Sodium Glucose Cotransporter Inhibitor: Is NHE1 a viable target?" En Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0228.
Texto completoFarrar, G. E. y A. I. Veress. "A Coupled Model of LV Growth and Mechanics Applied to Pressure Overload Hypertrophy". En ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14557.
Texto completoMacpherson, A. K., S. Neti, P. A. Macpherson, S. R. Houser, M. Hari y J. Marzillier. "Mechanical stress and hypertrophy". En BIOMEDICINE 2005. Southampton, UK: WIT Press, 2005. http://dx.doi.org/10.2495/bio050171.
Texto completoBian, Liming, Robert L. Mauck y Jason A. Burdick. "Dynamic Compressive Loading and Crosslinking Density Influence the Chondrogenic and Hypertrophic Differentiation of Human Mesenchymal Stem Cells Seeded in Hyaluronic Acid Hydrogels". En ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80048.
Texto completoPujowaskito, Prihati, Nia Melinda Pardede, Evi Sovia y Pradiba Amadita. "Hypertension with Left Ventricular Hypertrophy". En 12th Annual Scientific Meeting, Medical Faculty, Universitas Jenderal Achmad Yani, International Symposium on "Emergency Preparedness and Disaster Response during COVID 19 Pandemic" (ASMC 2021)). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/ahsr.k.210723.057.
Texto completoHughes, Rebecca K., João B. Augusto, Kristopher Knott, Andreas Seraphim, George Joy, Saidi Mohiddin, Gabriella Captur, Luis R. Lopes, Peter Kellman y James C. Moon. "20 Apical ischaemia is ubiquitous in apical hypertrophic cardiomyopathy and occurs before overt hypertrophy". En British Society of Cardiovascular Magnetic Resonance 2021 Annual Meeting. BMJ Publishing Group Ltd and British Cardiovascular Society, 2021. http://dx.doi.org/10.1136/heartjnl-2021-bscmr.20.
Texto completoDamani, Devanshi N., Anoushka Kapoor, Priyadharshini Sivasubramaniam, Nasibeh Farahani, Moein Enayati, Jeffrey B. Geske, Michael J. Ackerman et al. "Biventricular Involvement In Hypertrophic Cardiomyopathy: Preliminary Analysis Of Cardiac MRIs With Visual Right Ventricular Hypertrophy". En 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI). IEEE, 2022. http://dx.doi.org/10.1109/ichi54592.2022.00031.
Texto completoMartin, DW, J. Mazer, EO Harrington y G. Choudhary. "PKC Isoforms in Right Ventricular Hypertrophy." En American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4145.
Texto completoTozatto Zago, Gabriel, Rodrigo Varejão Andreão y Mario Sarcinelli Filho. "ECG-based Detection of Left Ventricle Hypertrophy". En International Congress on Cardiovascular Technologies. SCITEPRESS - Science and and Technology Publications, 2014. http://dx.doi.org/10.5220/0005069600170021.
Texto completoSutar, Rajendra G. y A. G. Kothari. "Detection of cardiac hypertrophy by ECG analysis". En 2012 International Conference on Communication, Information & Computing Technology (ICCICT). IEEE, 2012. http://dx.doi.org/10.1109/iccict.2012.6398192.
Texto completoInformes sobre el tema "Hypertrophy"
Kraemer, William J. Strategies for Optimizing Strength, Power, and Muscle Hypertrophy in Women. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1997. http://dx.doi.org/10.21236/ada348669.
Texto completoLingle, Wilma. Centrosome Hypertrophy Induced by p53 Mutations Leads to Tumor Aneuploidy. Fort Belvoir, VA: Defense Technical Information Center, junio de 2000. http://dx.doi.org/10.21236/ada392933.
Texto completoliu, menghui, yanchao zhang y lixin li. Traditional Chinese medicine for the treatment of pediatric adenoid hypertrophy: A protocol for Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, febrero de 2022. http://dx.doi.org/10.37766/inplasy2022.2.0104.
Texto completoCurrier, Brad, Maria Fiatarone Singh, Caroline Lowisz, Eric Rawson, Brad Schoenfeld, Abbie Smith-Ryan, Jeremy Steen et al. An umbrella review of resistance training to promote increases in muscle function and hypertrophy. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, junio de 2023. http://dx.doi.org/10.37766/inplasy2023.6.0071.
Texto completoLeblanc, Samuel. The optimal range of motion for hypertrophy:<br>A review of the literature. ResearchHub Technologies, Inc., agosto de 2022. http://dx.doi.org/10.55277/researchhub.56zv24z4.
Texto completoCurrier, Brad, Jonathan Mcleod y Stuart Phillips. The Influence of Resistance Exercise Training Prescription Variables on Muscle Mass, Muscle Strength, and Physical Function in Healthy Adults: An Umbrella Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, febrero de 2022. http://dx.doi.org/10.37766/inplasy2022.2.0028.
Texto completoKraemer, William J. Strategies for Optimizing Strength, Power, and Muscle Hypertrophy in Women: Contribution of Upper Body Resistance Training. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1999. http://dx.doi.org/10.21236/ada371349.
Texto completoGuede-Rojas, Francisco, Alexis Benavides-Villanueva, Sergio Salgado-González, Cristhian Mendoza, Gonzalo Arias-Álvarez y Claudio Carvajal-Parodi. Effect of strength training on knee proprioception in patients with knee osteoarthritis. A systematic review and meta-analysis protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, mayo de 2023. http://dx.doi.org/10.37766/inplasy2023.5.0102.
Texto completoCahaner, Avigdor, Sacit F. Bilgili, Orna Halevy, Roger J. Lien y Kellye S. Joiner. effects of enhanced hypertrophy, reduced oxygen supply and heat load on breast meat yield and quality in broilers. United States Department of Agriculture, noviembre de 2014. http://dx.doi.org/10.32747/2014.7699855.bard.
Texto completoLaskin, Grant, Liliana Renteria y Brad Gordon. Effects of resistance exercise load on muscle fiber type hypertrophy in the untrained: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, septiembre de 2022. http://dx.doi.org/10.37766/inplasy2022.9.0128.
Texto completo