Artículos de revistas sobre el tema "Hyperthermia cancer magnetic field"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hyperthermia cancer magnetic field".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Choi, D. S., J. Park, S. Kim, D. H. Gracias, M. K. Cho, Y. K. Kim, A. Fung et al. "Hyperthermia with Magnetic Nanowires for Inactivating Living Cells". Journal of Nanoscience and Nanotechnology 8, n.º 5 (1 de mayo de 2008): 2323–27. http://dx.doi.org/10.1166/jnn.2008.273.
Texto completoMostafa Yusefi, Kamyar Shameli y Siti Nur Amalina Mohamad Sukri. "Magnetic Nanoparticles In Hyperthermia Therapy: A Mini-Review". Journal of Research in Nanoscience and Nanotechnology 2, n.º 1 (13 de mayo de 2021): 51–60. http://dx.doi.org/10.37934/jrnn.2.1.5160.
Texto completoGIUSTINI, ANDREW J., ALICIA A. PETRYK, SHIRAZ M. CASSIM, JENNIFER A. TATE, IAN BAKER y P. JACK HOOPES. "MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT". Nano LIFE 01, n.º 01n02 (marzo de 2010): 17–32. http://dx.doi.org/10.1142/s1793984410000067.
Texto completoNemkov, V., R. Ruffini, R. Goldstein, J. Jackowski, T. L. DeWeese y R. Ivkov. "Magnetic field generating inductor for cancer hyperthermia research". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 30, n.º 5 (13 de septiembre de 2011): 1626–36. http://dx.doi.org/10.1108/03321641111152784.
Texto completoKim, D. H., Se Ho Lee, Kyoung Nam Kim, Kwang Mahn Kim, I. B. Shim y Yong Keun Lee. "In Vitro and In Vivo Characterization of Various Ferrites for Hyperthermia in Cancer-Treatment". Key Engineering Materials 284-286 (abril de 2005): 827–30. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.827.
Texto completoPalzer, Julian, Lea Eckstein, Ioana Slabu, Oliver Reisen, Ulf P. Neumann y Anjali A. Roeth. "Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies". Nanomaterials 11, n.º 11 (10 de noviembre de 2021): 3013. http://dx.doi.org/10.3390/nano11113013.
Texto completoFatima, Hira, Tawatchai Charinpanitkul y Kyo-Seon Kim. "Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy". Nanomaterials 11, n.º 5 (1 de mayo de 2021): 1203. http://dx.doi.org/10.3390/nano11051203.
Texto completoDinh, Quang Thanh, Van Tuan Dinh, Hoai Nam Nguyen, Tien Anh Nguyen, Xuan Truong Nguyen, Luong Lam Nguyen, Thi Mai Thanh Dinh, Hong Nam Pham y Van Quynh Nguyen. "Synthesis of magneto-plasmonic hybrid material for cancer hyperthermia". Journal of Military Science and Technology, n.º 81 (26 de agosto de 2022): 128–37. http://dx.doi.org/10.54939/1859-1043.j.mst.81.2022.128-137.
Texto completoMamiya, Hiroaki, Yoshihiko Takeda, Takashi Naka, Naoki Kawazoe, Guoping Chen y Balachandran Jeyadevan. "Practical Solution for Effective Whole-Body Magnetic Fluid Hyperthermia Treatment". Journal of Nanomaterials 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/1047697.
Texto completoShivanna, Anilkumar Thaghalli, Banendu Sunder Dash y Jyh-Ping Chen. "Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies". Micromachines 13, n.º 8 (8 de agosto de 2022): 1279. http://dx.doi.org/10.3390/mi13081279.
Texto completoCaizer, Costica. "Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy". Nanomaterials 11, n.º 1 (26 de diciembre de 2020): 40. http://dx.doi.org/10.3390/nano11010040.
Texto completoKwon, Yong-Su, Kyunjong Sim, Taeyoon Seo, Jin-Kyu Lee, Youngwoo Kwon y Tae-Jong Yoon. "Optimization of magnetic hyperthermia effect for breast cancer stem cell therapy". RSC Advances 6, n.º 109 (2016): 107298–304. http://dx.doi.org/10.1039/c6ra22382f.
Texto completoAlbarqi, Hassan A., Ananiya A. Demessie, Fahad Y. Sabei, Abraham S. Moses, Mikkel N. Hansen, Pallavi Dhagat, Olena R. Taratula y Oleh Taratula. "Systemically Delivered Magnetic Hyperthermia for Prostate Cancer Treatment". Pharmaceutics 12, n.º 11 (25 de octubre de 2020): 1020. http://dx.doi.org/10.3390/pharmaceutics12111020.
Texto completoKuwahata, Akihiro, Yuui Adachi y Shin Yabukami. "Ultra-short pulse magnetic fields on effective magnetic hyperthermia for cancer therapy". AIP Advances 13, n.º 2 (1 de febrero de 2023): 025145. http://dx.doi.org/10.1063/9.0000558.
Texto completoSanad, Mohamed F., Bianca P. Meneses-Brassea, Dawn S. Blazer, Shirin Pourmiri, George C. Hadjipanayis y Ahmed A. El-Gendy. "Superparamagnetic Fe/Au Nanoparticles and Their Feasibility for Magnetic Hyperthermia". Applied Sciences 11, n.º 14 (20 de julio de 2021): 6637. http://dx.doi.org/10.3390/app11146637.
Texto completoKaur, Yashpreet, Abhishek Chandel y Bhupendra Chudasama. "Magnetic hyperthermia of AFe2O4 (A = Fe, Mn, Co) nanoparticles prepared by Co-precipitation method". AIP Advances 13, n.º 2 (1 de febrero de 2023): 025034. http://dx.doi.org/10.1063/9.0000478.
Texto completoNabil, Mahdi y Paolo Zunino. "A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs". Royal Society Open Science 3, n.º 9 (septiembre de 2016): 160287. http://dx.doi.org/10.1098/rsos.160287.
Texto completoR. Aarathy, A., M. S. Gopika y S. Savitha Pillai. "Recent Insights into the Potential of Magnetic Metal Nanostructures as Magnetic Hyperthermia Agents". Sensor Letters 18, n.º 12 (1 de diciembre de 2020): 861–80. http://dx.doi.org/10.1166/sl.2020.4297.
Texto completoBensenane, Mohamed Nassim, Assia Rachida Senoudi, Reda Benmouna y Fouzia Ould-Kaddour. "Analytical modeling of hyperthermia using magnetic nanoparticles". European Physical Journal Applied Physics 81, n.º 3 (marzo de 2018): 30901. http://dx.doi.org/10.1051/epjap/2018170423.
Texto completoChen, Lili, Nanami Fujisawa, Masato Takanohashi, Mazaya Najmina, Koichiro Uto y Mitsuhiro Ebara. "A Smart Hyperthermia Nanofiber-Platform-Enabled Sustained Release of Doxorubicin and 17AAG for Synergistic Cancer Therapy". International Journal of Molecular Sciences 22, n.º 5 (3 de marzo de 2021): 2542. http://dx.doi.org/10.3390/ijms22052542.
Texto completoGupta, Ruby, Ruchi Tomar, Suvankar Chakraverty y Deepika Sharma. "Effect of manganese doping on the hyperthermic profile of ferrite nanoparticles using response surface methodology". RSC Advances 11, n.º 28 (2021): 16942–54. http://dx.doi.org/10.1039/d1ra02376d.
Texto completoTsiapla, Aikaterini-Rafailia, Antonia-Areti Kalimeri, Nikolaos Maniotis, Eirini Myrovali, Theodoros Samaras, Mavroeidis Angelakeris y Orestis Kalogirou. "Mitigation of magnetic particle hyperthermia side effects by magnetic field controls". International Journal of Hyperthermia 38, n.º 1 (1 de enero de 2021): 511–22. http://dx.doi.org/10.1080/02656736.2021.1899310.
Texto completoAbdel Maksoud, Mohamed Ibrahim Ahmed, Mohamed Mohamady Ghobashy, Ahmad S. Kodous, Ramy Amer Fahim, Ahmed I. Osman, Ala’a H. Al-Muhtaseb, David W. Rooney, Mohamed A. Mamdouh, Norhan Nady y Ahmed H. Ashour. "Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications". Nanotechnology Reviews 11, n.º 1 (1 de enero de 2022): 372–413. http://dx.doi.org/10.1515/ntrev-2022-0027.
Texto completoBrero, Francesca, Martin Albino, Antonio Antoccia, Paolo Arosio, Matteo Avolio, Francesco Berardinelli, Daniela Bettega et al. "Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment". Nanomaterials 10, n.º 10 (25 de septiembre de 2020): 1919. http://dx.doi.org/10.3390/nano10101919.
Texto completoUsov, Nikolai A. y Elizaveta M. Gubanova. "Application of Magnetosomes in Magnetic Hyperthermia". Nanomaterials 10, n.º 7 (5 de julio de 2020): 1320. http://dx.doi.org/10.3390/nano10071320.
Texto completoAbdulla-Al-Mamun, Md, Yoshihumi Kusumoto y Md Shariful Islam. "A new, simple hydrothermal synthesis of magnetic nano-octahedrons — Application to hyperthermia cancer cell killing". Canadian Journal of Chemistry 90, n.º 8 (agosto de 2012): 660–65. http://dx.doi.org/10.1139/v2012-046.
Texto completoNabil, M., P. Decuzzi y P. Zunino. "Modelling mass and heat transfer in nano-based cancer hyperthermia". Royal Society Open Science 2, n.º 10 (octubre de 2015): 150447. http://dx.doi.org/10.1098/rsos.150447.
Texto completoGkanas, Evangelos. "In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines". Open Chemistry 11, n.º 7 (1 de julio de 2013): 1042–54. http://dx.doi.org/10.2478/s11532-013-0246-z.
Texto completoFanari, Fabio, Lorena Mariani y Francesco Desogus. "Heat Transfer Modeling in Bone Tumour Hyperthermia Induced by Hydroxyapatite Magnetic Thermo-Seeds". Open Chemical Engineering Journal 14, n.º 1 (20 de noviembre de 2020): 77–89. http://dx.doi.org/10.2174/1874123102014010077.
Texto completoEgea-Benavente, David, Jesús G. Ovejero, María del Puerto Morales y Domingo F. Barber. "Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation". Cancers 13, n.º 18 (12 de septiembre de 2021): 4583. http://dx.doi.org/10.3390/cancers13184583.
Texto completoWang, Lilin, Aziliz Hervault, Paul Southern, Olivier Sandre, Franck Couillaud y Nguyen Thi Kim Thanh. "In vitro exploration of the synergistic effect of alternating magnetic field mediated thermo–chemotherapy with doxorubicin loaded dual pH- and thermo-responsive magnetic nanocomposite carriers". Journal of Materials Chemistry B 8, n.º 46 (2020): 10527–39. http://dx.doi.org/10.1039/d0tb01983f.
Texto completoRuskin, Ethel Ibinabo, Paritosh Perry Coomar, Prabaha Sikder y Sarit B. Bhaduri. "Magnetic Calcium Phosphate Cement for Hyperthermia Treatment of Bone Tumors". Materials 13, n.º 16 (8 de agosto de 2020): 3501. http://dx.doi.org/10.3390/ma13163501.
Texto completoSharma, Anirudh, Avesh Jangam, Julian Low Yung Shen, Aiman Ahmad, Nageshwar Arepally, Benjamin Rodriguez, Joseph Borrello et al. "Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device". Cancers 15, n.º 2 (4 de enero de 2023): 327. http://dx.doi.org/10.3390/cancers15020327.
Texto completoWłodarczyk, Agnieszka, Szymon Gorgoń, Adrian Radoń y Karolina Bajdak-Rusinek. "Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives". Nanomaterials 12, n.º 11 (25 de mayo de 2022): 1807. http://dx.doi.org/10.3390/nano12111807.
Texto completoArriortua, Oihane K., Eneko Garaio, Borja Herrero de la Parte, Maite Insausti, Luis Lezama, Fernando Plazaola, Jose Angel García et al. "Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases". Beilstein Journal of Nanotechnology 7 (28 de octubre de 2016): 1532–42. http://dx.doi.org/10.3762/bjnano.7.147.
Texto completoRaniszewski, Grzegorz, Arkadiusz Miaskowski y Slawomir Wiak. "The Application of Carbon Nanotubes in Magnetic Fluid Hyperthermia". Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/527652.
Texto completoTansi, Felista L., Wisdom O. Maduabuchi, Melanie Hirsch, Paul Southern, Simon Hattersley, Rainer Quaas, Ulf Teichgräber, Quentin A. Pankhurst y Ingrid Hilger. "Deep-tissue localization of magnetic field hyperthermia using pulse sequencing". International Journal of Hyperthermia 38, n.º 1 (1 de enero de 2021): 743–54. http://dx.doi.org/10.1080/02656736.2021.1912412.
Texto completoBani, Milad Salimi, Shadie Hatamie, Mohammad Haghpanahi, Hossein Bahreinizad, Mohammad Hossein Shahsavari Alavijeh, Reza Eivazzadeh-Keihan y Zhung Hang Wei. "Casein-Coated Iron Oxide Nanoparticles for in vitro Hyperthermia for Cancer Therapy". SPIN 09, n.º 02 (junio de 2019): 1940003. http://dx.doi.org/10.1142/s2010324719400034.
Texto completoKim, Hyun-Chul, Eunjoo Kim, Sang Won Jeong, Tae-Lin Ha, Sang-Im Park, Se Guen Lee, Sung Jun Lee y Seung Woo Lee. "Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy". Nanoscale 7, n.º 39 (2015): 16470–80. http://dx.doi.org/10.1039/c5nr04130a.
Texto completoAlkhayal, Anoud, Arshia Fathima, Ali H. Alhasan y Edreese H. Alsharaeh. "PEG Coated Fe3O4/RGO Nano-Cube-Like Structures for Cancer Therapy via Magnetic Hyperthermia". Nanomaterials 11, n.º 9 (15 de septiembre de 2021): 2398. http://dx.doi.org/10.3390/nano11092398.
Texto completoKaprin, Andrei, Ilya Vasilchenko, Alexey Osintsev, Vladimir Braginsky, Vitaliy Rynk, Egor Gromov, Andrei Kostin, Aleksandr Prosekov y Roman Kotov. "Study of implants for intraoperative hyperthermia". Problems in oncology 67, n.º 2 (30 de abril de 2021): 233–45. http://dx.doi.org/10.37469/0507-3758-2021-67-2-233-245.
Texto completoLuengo, Yurena, Zamira V. Díaz-Riascos, David García-Soriano, Francisco J. Teran, Emilio J. Artés-Ibáñez, Oihane Ibarrola, Álvaro Somoza et al. "Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation". Pharmaceutics 14, n.º 8 (22 de julio de 2022): 1526. http://dx.doi.org/10.3390/pharmaceutics14081526.
Texto completoDürr, Stephan, Christina Janko, Stefan Lyer, Philipp Tripal, Marc Schwarz, Jan Zaloga, Rainer Tietze y Christoph Alexiou. "Magnetic nanoparticles for cancer therapy". Nanotechnology Reviews 2, n.º 4 (1 de agosto de 2013): 395–409. http://dx.doi.org/10.1515/ntrev-2013-0011.
Texto completoKalubowilage, Madumali, Katharine Janik y Stefan H. Bossmann. "Magnetic Nanomaterials for Magnetically-Aided Drug Delivery and Hyperthermia". Applied Sciences 9, n.º 14 (22 de julio de 2019): 2927. http://dx.doi.org/10.3390/app9142927.
Texto completoMamiya, Hiroaki. "Recent Advances in Understanding Magnetic Nanoparticles in AC Magnetic Fields and Optimal Design for Targeted Hyperthermia". Journal of Nanomaterials 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/752973.
Texto completoThongsopa, Chanchai y Thanaset Thosdeekoraphat. "Analysis and Design of Magnetic Shielding System for Breast Cancer Treatment with Hyperthermia Inductive Heating". International Journal of Antennas and Propagation 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/163905.
Texto completoGanguly, Sayan y Shlomo Margel. "Design of Magnetic Hydrogels for Hyperthermia and Drug Delivery". Polymers 13, n.º 23 (4 de diciembre de 2021): 4259. http://dx.doi.org/10.3390/polym13234259.
Texto completoThanaset, Thosdeekoraphat, Santalunai Samran y Thongsopa Chanchai. "Improved the Performance of Focusing Deep Hyperthermia Inductive Heating for Breast Cancer Treatment by Using Ferro-Fluid with Magnetic Shielding System". Applied Mechanics and Materials 325-326 (junio de 2013): 353–58. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.353.
Texto completoCaizer, Costica, Isabela Simona Caizer, Roxana Racoviceanu, Claudia Geanina Watz, Marius Mioc, Cristina Adriana Dehelean, Tiberiu Bratu y Codruța Soica. "Fe3O4-PAA–(HP-γ-CDs) Biocompatible Ferrimagnetic Nanoparticles for Increasing the Efficacy in Superparamagnetic Hyperthermia". Nanomaterials 12, n.º 15 (27 de julio de 2022): 2577. http://dx.doi.org/10.3390/nano12152577.
Texto completoCaizer, Costica. "Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia". Applied Sciences 11, n.º 12 (14 de junio de 2021): 5505. http://dx.doi.org/10.3390/app11125505.
Texto completo