Literatura académica sobre el tema "Hyperthermia cancer magnetic field"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hyperthermia cancer magnetic field".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hyperthermia cancer magnetic field"
Choi, D. S., J. Park, S. Kim, D. H. Gracias, M. K. Cho, Y. K. Kim, A. Fung et al. "Hyperthermia with Magnetic Nanowires for Inactivating Living Cells". Journal of Nanoscience and Nanotechnology 8, n.º 5 (1 de mayo de 2008): 2323–27. http://dx.doi.org/10.1166/jnn.2008.273.
Texto completoMostafa Yusefi, Kamyar Shameli y Siti Nur Amalina Mohamad Sukri. "Magnetic Nanoparticles In Hyperthermia Therapy: A Mini-Review". Journal of Research in Nanoscience and Nanotechnology 2, n.º 1 (13 de mayo de 2021): 51–60. http://dx.doi.org/10.37934/jrnn.2.1.5160.
Texto completoGIUSTINI, ANDREW J., ALICIA A. PETRYK, SHIRAZ M. CASSIM, JENNIFER A. TATE, IAN BAKER y P. JACK HOOPES. "MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT". Nano LIFE 01, n.º 01n02 (marzo de 2010): 17–32. http://dx.doi.org/10.1142/s1793984410000067.
Texto completoNemkov, V., R. Ruffini, R. Goldstein, J. Jackowski, T. L. DeWeese y R. Ivkov. "Magnetic field generating inductor for cancer hyperthermia research". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 30, n.º 5 (13 de septiembre de 2011): 1626–36. http://dx.doi.org/10.1108/03321641111152784.
Texto completoKim, D. H., Se Ho Lee, Kyoung Nam Kim, Kwang Mahn Kim, I. B. Shim y Yong Keun Lee. "In Vitro and In Vivo Characterization of Various Ferrites for Hyperthermia in Cancer-Treatment". Key Engineering Materials 284-286 (abril de 2005): 827–30. http://dx.doi.org/10.4028/www.scientific.net/kem.284-286.827.
Texto completoPalzer, Julian, Lea Eckstein, Ioana Slabu, Oliver Reisen, Ulf P. Neumann y Anjali A. Roeth. "Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies". Nanomaterials 11, n.º 11 (10 de noviembre de 2021): 3013. http://dx.doi.org/10.3390/nano11113013.
Texto completoFatima, Hira, Tawatchai Charinpanitkul y Kyo-Seon Kim. "Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy". Nanomaterials 11, n.º 5 (1 de mayo de 2021): 1203. http://dx.doi.org/10.3390/nano11051203.
Texto completoDinh, Quang Thanh, Van Tuan Dinh, Hoai Nam Nguyen, Tien Anh Nguyen, Xuan Truong Nguyen, Luong Lam Nguyen, Thi Mai Thanh Dinh, Hong Nam Pham y Van Quynh Nguyen. "Synthesis of magneto-plasmonic hybrid material for cancer hyperthermia". Journal of Military Science and Technology, n.º 81 (26 de agosto de 2022): 128–37. http://dx.doi.org/10.54939/1859-1043.j.mst.81.2022.128-137.
Texto completoMamiya, Hiroaki, Yoshihiko Takeda, Takashi Naka, Naoki Kawazoe, Guoping Chen y Balachandran Jeyadevan. "Practical Solution for Effective Whole-Body Magnetic Fluid Hyperthermia Treatment". Journal of Nanomaterials 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/1047697.
Texto completoShivanna, Anilkumar Thaghalli, Banendu Sunder Dash y Jyh-Ping Chen. "Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies". Micromachines 13, n.º 8 (8 de agosto de 2022): 1279. http://dx.doi.org/10.3390/mi13081279.
Texto completoTesis sobre el tema "Hyperthermia cancer magnetic field"
Lukawska, Anna Beata. "THERMAL PROPERTIES OF MAGNETIC NANOPARTICLES IN EXTERNAL AC MAGNETIC FIELD". Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401441820.
Texto completoHallali, Nicolas. "Utilisation de nanoparticules magnétiques dans les traitements anti-tumoraux : Au-delà de l'hyperthermie magnétique". Thesis, Toulouse, INSA, 2016. http://www.theses.fr/2016ISAT0025/document.
Texto completoTwo anti-tumor treatments based on magnetic nanoparticles (MNPs) and oscillating magnetic field were studied. The first one, magnetic hyperthermia, uses the heat released by MNPs in contact with tumor cells under a high frequency alternating magnetic field. We have shown that the forces induced by magnetic field inhomogeneity during magnetic hyperthermia essay no influence on cellular viability. Moreover, magnetic measurements, XPS characterization and heating power evaluation of iron MNPs coated by amorphous silica shell were carried out. It was observed that this shell is able to preserve the MNP magnetic properties submitted to an aqueous environment. The second anti-tumor treatment combines MNPs and low-frequency magnetic field, inducing mechanical stress to tumor cells. A complete theoretical study on the influence of magnetic field, thermal agitation and magnetic interaction on the magneto-mechanical forces generated by the MNPs was carried out. It was demonstrated that for a MNP assembly this force increases dramatically when the rotation of the magnetic field induces a break of time reversal symmetry on the magneto-mechanical torque. Experimentally, several devices generating low frequency rotating magnetic fields were developed. Using these devices, in-vitro essays were also achieved using phosphatidylcholine coated MNPs, which bind to cellular membranes. An application of a 40 or 380 mT magnetic field rotating at 10 Hz reduced cell survival rate
Nemati, Porshokouh Zohreh. "Novel Magnetic Nanostructures for Enhanced Magnetic Hyperthermia Cancer Therapy". Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6548.
Texto completoPatel, Anil Pravin. "Cancer hyperthermia using gold and magnetic nanoparticles". Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8124/.
Texto completoKozissnik, B. "Antibody targeted magnetic nanoparticle hyperthermia for cancer therapy". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1415747/.
Texto completoPetryk, Alicia Ailie. "Magnetic nanoparticle hyperthermia as an adjuvant cancer therapy with chemotherapy". Thesis, Dartmouth College, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3634608.
Texto completoMagnetic nanoparticle hyperthermia (mNPH) is an emerging cancer therapy which has shown to be most effective when applied in the adjuvant setting with chemotherapy, radiation or surgery. Although mNPH employs heat as a primary therapeutic modality, conventional heat may not be the only cytotoxic effect. As such, my studies have focused on the mechanism and use of mNPH alone and in conjunction with cisplatinum chemotherapy in murine breast cancer cells and a related in vivo model. MNPH was compared to conventional microwave tumor heating, with results suggesting that mNPH (mNP directly injected into the tumor and immediately activated) and 915 MHz microwave hyperthermia, at the same thermal dose, result in similar tumor regrowth delay kinetics. However, mNPH shows significantly less peri-tumor normal tissue damage. MNPH combined with cisplatinum also demonstrated significant improvements in regrowth delay over either modality applied as a monotherapy. Additional studies demonstrated that a relatively short tumor incubation time prior to AMF exposure (less than 10 minutes) as compared to a 4-hour incubation time, resulted in faster heating rates, but similar regrowth delays when treated to the same thermal dose. The reduction of heating rate correlated well with the observed reduction in mNP concentration in the tumor observed with 4 hour incubation. The ability to effectively deliver cytotoxic mNPs to metastatic tumors is the hope and goal of systemic mNP therapy. However, delivering relevant levels of mNP is proving to be a formidable challenge. To address this issue, I assessed the ability of cisplatinum to simultaneously treat a tumor and improve the uptake of systemically delivered mNPs. Following a cisplatinum pretreatment, systemic mNPs uptake was increased by 3.1 X, in implanted murine breast tumors. Additional in vitro studies showed the necessity of a specific mNP/ Fe architecture and spatial relation for heat-based cytotoxicity in cultured cells.
Holladay, Robert Tyler. "Incorporating Magnetic Nanoparticle Aggregation Effects into Heat Generation and Temperature Profiles for Magnetic Hyperthermia Cancer Treatments". Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/64507.
Texto completoMaster of Science
Andersson, Mikael. "Modeling and characterization of magnetic nanoparticles intended for cancer treatment". Thesis, Uppsala universitet, Fasta tillståndets fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-199055.
Texto completoKallumadil, M. "Towards a complete magnetic hyperthermia technology as a novel cancer treatment system". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1149633/.
Texto completoUEDA, MINORU, MASAAKI MATSUI, TATSUYA KOBAYASHI, KENJI MITSUDO, YASUSHI HAYASHI y IWAI TOHNAI. "THERMOCHEMOTHERAPY FOR CANCER OF THE TONGUE USING MAGNETIC INDUCTION HYPERTHERMIA (IMPLANT HEATING SYSTEM : IHS)". Nagoya University School of Medicine, 1996. http://hdl.handle.net/2237/16101.
Texto completoLibros sobre el tema "Hyperthermia cancer magnetic field"
Suleman, Muhammad. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment: Modeling and Simulation. Elsevier Science & Technology, 2023.
Buscar texto completoSuleman, Muhammad. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment: Modeling and Simulation. Elsevier Science & Technology Books, 2023.
Buscar texto completoClose, Frank. 8. Applied nuclear physics. Oxford University Press, 2015. http://dx.doi.org/10.1093/actrade/9780198718635.003.0008.
Texto completoCapítulos de libros sobre el tema "Hyperthermia cancer magnetic field"
Balasubramanian, Sivakumar y Allison J. Cowin. "Magnetic Nanoparticles for Hyperthermia against Cancer". En Bionanotechnology in Cancer, 337–72. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9780429422911-11.
Texto completoAsín, Laura, Grazyna Stepien, María Moros, Raluca Maria Fratila y Jesús Martínez de la Fuente. "Magnetic Nanoparticles for Cancer Treatment Using Magnetic Hyperthermia". En Clinical Applications of Magnetic Nanoparticles, 305–18. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315168258-16.
Texto completoChaudhary, Richa y Varun Chaudhary. "Magnetic Nanomaterials for Hyperthermia and Bioimaging". En Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications, 91–114. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09636-5_4.
Texto completoHand, J. W. y R. H. Johnson. "Field Penetration from Electromagnetic Applicators for Localized Hyperthermia". En Recent Results in Cancer Research, 7–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82530-9_2.
Texto completoWeisser, M. y P. Kneschaurek. "Advanced Technique in Localized Current Field Hyperthermia". En Application of Hyperthermia in the Treatment of Cancer, 87–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83260-4_11.
Texto completoJaved, Yasir, Khuram Ali y Yasir Jamil. "Magnetic Nanoparticle-Based Hyperthermia for Cancer Treatment: Factors Affecting Heat Generation Efficiency". En Complex Magnetic Nanostructures, 393–424. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52087-2_11.
Texto completoCaizer, Costica. "Magnetic Hyperthermia-Using Magnetic Metal/Oxide Nanoparticles with Potential in Cancer Therapy". En Metal Nanoparticles in Pharma, 193–218. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63790-7_10.
Texto completoCaizer, Costică, Cristina Dehelean, Dorina Elena Coricovac, Isabela Simona Caizer y Codruta Şoica. "Magnetic Nanoparticle Nanoformulations for Alternative Therapy of Cancer by Magnetic/Superparamagnetic Hyperthermia". En Nanoformulations in Human Health, 503–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41858-8_22.
Texto completoMekaru, Harutaka, Yuko Ichiyanagi y Fuyuhiko Tamanoi. "Magnetic Nanoparticles and Alternating Magnetic Field for Cancer Therapy". En Cell-Inspired Materials and Engineering, 165–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55924-3_7.
Texto completoGopalakrishnan, Sandhya y Kannan Vaidyanathan. "Magnetic Nanoparticles for Hyperthermia a New Revolution in Cancer Treatment". En Gels Horizons: From Science to Smart Materials, 119–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1260-2_6.
Texto completoActas de conferencias sobre el tema "Hyperthermia cancer magnetic field"
Qin, Zhenpeng, Neha Shah, Taner Akkin, Warren C. W. Chan y John C. Bischof. "Thermal Analysis Measurement of Gold Nanoparticle Interactions With Cell and Biomaterial". En ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80554.
Texto completoJiang, Junfeng, Ruoyu Hong, Xiaohui Zhang y Hongzhong Li. "On the in Vitro Hyperthermia of Magnetic Fluid in AC Magnetic Field". En ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18547.
Texto completoKastner, Elliot J., Russell Reeves, William Bennett, Aditi Misra, Jim D. Petryk, Alicia A. Petryk y P. Jack Hoopes. "Alternating magnetic field optimization for IONP hyperthermia cancer treatment". En SPIE BiOS, editado por Thomas P. Ryan. SPIE, 2015. http://dx.doi.org/10.1117/12.2083196.
Texto completoStigliano, Robert V., Fridon Shubitidze y P. Jack Hoopes. "Magnetic Nanoparticle Hyperthermia Cancer Therapy Temperature Distribution Modeling and Validation". En ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93123.
Texto completoDeng, Zhong-Shan y Jing Liu. "Theoretical Evaluation on the Thermal Effects of Extracellular Hyperthermia and Intracellular Hyperthermia". En 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21263.
Texto completoHayek, Saleh S., Ching-Jen Chen, Yousef S. Haik y Mark H. Weatherspoon. "Analysis of Heat Generation Through-Electromagnetic Energy Conversion for Magnetic Hyperthermia Cancer Treatment". En ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14147.
Texto completoHuang, Shujuan, Amit Gupta y Diana-Andra Borca-Tasciuc. "Sources of Experimental Errors in Specific Absorption Rate Measurement of Magnetic Nanoparticles". En ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30796.
Texto completoSu, Di, Ronghui Ma y Liang Zhu. "Numerical Study of Nanofluid Transport in Tumors During Nanofluid Infusion for Magnetic Nanoparticle Hyperthermia Treatment". En ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75101.
Texto completoAttaluri, Anilchandra, Ronghui Ma y Liang Zhu. "Using MicroCT Imaging to Quantify Heat Generation Distribution Induced by Magnetic Nanoparticles". En ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19033.
Texto completoMansfield, James R., Jeffrey M. Gaudet, Gang Ren, Daniel Hensley, Patrick Goodwill y Max Wintermark. "Abstract B7: Changing the field: Magnetic particle imaging and localized RF hyperthermia in cancer immunology". En Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; November 17-20, 2019; Boston, MA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/2326-6074.tumimm19-b7.
Texto completoInformes sobre el tema "Hyperthermia cancer magnetic field"
Panyam, Jayanth. Targeted Magnetic Hyperthermia for Lung Cancer. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2012. http://dx.doi.org/10.21236/ada568987.
Texto completoPanyam, Jayanth. Targeted Magnetic Hyperthermia for Lung Cancer. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada592043.
Texto completoPanyam, Jayanth. Targeted Magnetic Hyperthermia for Lung Cancer. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2014. http://dx.doi.org/10.21236/ada620276.
Texto completoAdolphi, Natalie L. Novel Synergistic Therapy for Metastatic Breast Cancer: Magnetic Nanoparticle Hyperthermia of the Neovasculature Enhanced by a Vascular Disruption Agent. Fort Belvoir, VA: Defense Technical Information Center, abril de 2013. http://dx.doi.org/10.21236/ada584503.
Texto completo