Literatura académica sobre el tema "Hypersensitive disease resistance"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hypersensitive disease resistance".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hypersensitive disease resistance"
Park, Jeong-Mee. "The Hypersensitive Response. A Cell Death during Disease Resistance". Plant Pathology Journal 21, n.º 2 (1 de enero de 2005): 99–101. http://dx.doi.org/10.5423/ppj.2005.21.2.099.
Texto completoTenhaken, R., A. Levine, L. F. Brisson, R. A. Dixon y C. Lamb. "Function of the oxidative burst in hypersensitive disease resistance." Proceedings of the National Academy of Sciences 92, n.º 10 (9 de mayo de 1995): 4158–63. http://dx.doi.org/10.1073/pnas.92.10.4158.
Texto completoYu, Gong-Xin, Ed Braun y Roger P. Wise. "Rds and Rih Mediate Hypersensitive Cell Death Independent of Gene-for-Gene Resistance to the Oat Crown Rust Pathogen Puccinia coronata f. sp. avenae". Molecular Plant-Microbe Interactions® 14, n.º 12 (diciembre de 2001): 1376–83. http://dx.doi.org/10.1094/mpmi.2001.14.12.1376.
Texto completoFontoura, Darci Da, Antonio Carlos Torres Costa, José Renato Stangarlin y Claudio Yuji Tsutsumi. "Disease resistance induction in second-season corn using acibenzolar-S-methyl and phosphorylated mannanoligosaccharide". Semina: Ciências Agrárias 36, n.º 6 (9 de diciembre de 2015): 3657. http://dx.doi.org/10.5433/1679-0359.2015v36n6p3657.
Texto completoDe Stefano, Matteo, Alberto Ferrarini y Massimo Delledonne. "Nitric oxide functions in the plant hypersensitive disease resistance response". BMC Plant Biology 5, Suppl 1 (2005): S10. http://dx.doi.org/10.1186/1471-2229-5-s1-s10.
Texto completoLevine, Alex, Roger I. Pennell, Maria E. Alvarez, Robert Palmer y Chris Lamb. "Calcium-mediated apoptosis in a plant hypersensitive disease resistance response". Current Biology 6, n.º 4 (abril de 1996): 427–37. http://dx.doi.org/10.1016/s0960-9822(02)00510-9.
Texto completoVALE, FRANCISCO XAVIER RIBEIRO DO, J. E. PARLEVLIET y LAÉRCIO ZAMBOLIM. "Concepts in plant disease resistance". Fitopatologia Brasileira 26, n.º 3 (septiembre de 2001): 577–89. http://dx.doi.org/10.1590/s0100-41582001000300001.
Texto completoKhan, M. A. y R. G. Saini. "Non-hypersensitive leaf rust resistance of bread wheat cultivar PBW65 conditioned by genes different fromLr34". Czech Journal of Genetics and Plant Breeding 45, No. 1 (11 de febrero de 2009): 26–30. http://dx.doi.org/10.17221/51/2008-cjgpb.
Texto completoGilroy, Eleanor M., Ingo Hein, Renier Van Der Hoorn, Petra C. Boevink, Eduard Venter, Hazel McLellan, Florian Kaffarnik et al. "Involvement of cathepsin B in the plant disease resistance hypersensitive response". Plant Journal 52, n.º 1 (26 de julio de 2007): 1–13. http://dx.doi.org/10.1111/j.1365-313x.2007.03226.x.
Texto completoCooper, Bret, Kimberly B. Campbell, Hunter S. Beard, Wesley M. Garrett y Marcio E. Ferreira. "The Proteomics of Resistance to Halo Blight in Common Bean". Molecular Plant-Microbe Interactions® 33, n.º 9 (septiembre de 2020): 1161–75. http://dx.doi.org/10.1094/mpmi-05-20-0112-r.
Texto completoTesis sobre el tema "Hypersensitive disease resistance"
Mahmood, Hamida. "Computational mining for terminator-like genes in soybean". Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32724.
Texto completoGenetics Interdepartmental Program - Plant Pathology
Frank F. White
Sanzhen Liu
Plants and bacterial pathogens are in constant co-evolution to survive and sustain the next generation. Plants have two well-characterized levels of active defense -pathogens-associated molecular patterns (PAMPs)-triggered immunity (PTI) and effectors-triggered immunity (ETI). Some plants that are hosts for bacterial pathogens employing type three secretion system transcription activator-like (TAL) effectors have evolved a unique form of ETI, namely TAL effector-mediated ETI. TAL effectors induce expression of specific disease susceptibility (S) genes. Rice and pepper have evolved resistance genes termed terminator (T) genes, which have promoters that bind TAL effectors and, upon expression of the T gene, elicit a hypersensitive reaction (HR) and cell death. Only five T genes have been cloned, and the origin of most T genes is unknown. To determine the presence of candidate T genes in other plants species, a bioinformatics-based mining was designed. The basic approach utilized three structural features common to four terminator genes: a short trans-membrane domain, a secretion signal domain, and a length of <200 amino acid residues. Soybean was chosen as the test plant species, and 161 genes were retrieved that fulfilled the three parameters using R and Perl software programs. Further, functional annotation of candidate genes was conducted by comparisons to genes in public databases. Major classes of proteins found included unique and hypothetical, defense/stress/oxidative stress associated, DNA-binding, kinases, transferases, hydrolases, effector-related tRNA splicing, and F- box domain proteins. The potential T genes will serve as candidates for experimental validation and new resources for durable resistance strategies in crop species.
Christopher, Stephen James. "Plant-pathogen interactions: turnip crinkle virus suppression of the hypersensitive response in arabidopsis thaliana". Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0429103-084755.
Texto completoKeywords: Turnip crinkle virus; arabidopsis; thaliana; TCV; avrRpt2; avrRpm1; avrRps4; systemic acquired resistance; virulence; Avr gene; R gene; pseudomonas syringae. Includes bibliographical references (p. 60-66).
Unver, Turgay. "Detection And Characterization Of Plant Genes Involved In Various Biotic And Abiotic Stress Conditions Using Ddrt-pcr And Isolation Of Interacting Proteins". Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609805/index.pdf.
Texto completoCHEN, Jian. "Assessment of nitric oxide signaling functions during the plant hypersensitive disease resistance response". Doctoral thesis, 2014. http://hdl.handle.net/11562/720970.
Texto completoIn plants, nitric oxide (NO) plays a crucial role in mediating defense signal in response to infection by bacterial pathogens. NO signal can be mediated by its direct interaction with target molecules, via post-translational modifications for instance, but it is believed that, like in animal cells, NO signal can also be relay by the second messenger cGMP (cyclic guanosine 3',5'-monophosphate) in particular to regulate defense gene expression. Despite the demonstration of its role during the HR, the detection of NO is still highly debated, mainly because its measurement methods are not fully specific. In the same way, cGMP detection in plants until now has been based on methods that often display a low sensitivity and a low throughput. In addition, due to the lack of identification of the enzymes responsible for cGMP metabolism, until now, the role of cGMP has been investigated only with the use of pharmacological compounds that sometimes raise the question about response specificity. In this study, we thus confirmed that NO is produced specifically during the incompatible interaction thanks to a chemiluminescence-based method and that NO production involves mainly nitrite as substrate and requires NR as well as other source(s) still unidentified. Moreover, a highly sensitive and with high throughput method based on AlphaScreen technology was successfully applied in plants to demonstrate the NO-dependent local and distal increase of cGMP level in response to avirulent pathogens. The characterization of transgenic Arabidopsis thaliana plants expressing the mammalian soluble guanylate cyclase (GC) showed that these plants accumulate high constitutive levels of cGMP compared with WT plants and display an altered expression of salicylic acid-dependent defence genes correlated with the loss of systemic acquired resistance establishment, while they show a normal resistance and hypersensitive cell death at local level. Moreover, in GC lines, SA-dependent pathway seems to be compromised in favour of jasmonate-dependent responses, suggesting a role for cGMP in regulating the hormonal switch.
"A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive induced reaction protein 1 (OsHIR1)". Thesis, 2009. http://library.cuhk.edu.hk/record=b6074981.
Texto completoZhou, Liang.
Adviser: Hon Ming Lam.
Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: .
Thesis (Ph.D.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaves 90-107).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
Libros sobre el tema "Hypersensitive disease resistance"
J, Novacky A., ed. The hypersensitive reaction in plants to pathogens: A resistance phenomenon /R.N. Goodman and A.J. Novacky. St. Paul, Minn: APS Press, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Hypersensitive disease resistance"
Delledonne, M., Y. Xia, R. A. Dixon, C. Lorenzoni y C. Lamb. "Nitric oxide signalling in the plant hypersensitive disease resistance response". En Developments in Plant Breeding, 127–33. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4475-9_15.
Texto completoChen, Jian, Diana Bellin y Elodie Vandelle. "Measurement of Cyclic GMP During Plant Hypersensitive Disease Resistance Response". En Methods in Molecular Biology, 143–51. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7668-3_13.
Texto completoAlvarez, María Elena. "Salicylic acid in the machinery of hypersensitive cell death and disease resistance". En Programmed Cell Death in Higher Plants, 185–98. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0934-8_14.
Texto completoJabs, Thorsten y Alan J. Slusarenko. "The Hypersensitive Response". En Mechanisms of Resistance to Plant Diseases, 279–323. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-3937-3_9.
Texto completoVandelle, Elodie, Tengfang Ling, Zahra Imanifard, Ruitao Liu, Massimo Delledonne y Diana Bellin. "Nitric Oxide Signaling during the Hypersensitive Disease Resistance Response". En Advances in Botanical Research, 219–43. Elsevier, 2016. http://dx.doi.org/10.1016/bs.abr.2015.10.013.
Texto completoInformes sobre el tema "Hypersensitive disease resistance"
Sessa, Guido y Gregory Martin. A functional genomics approach to dissect resistance of tomato to bacterial spot disease. United States Department of Agriculture, enero de 2004. http://dx.doi.org/10.32747/2004.7695876.bard.
Texto completoSessa, Guido y Gregory Martin. MAP kinase cascades activated by SlMAPKKKε and their involvement in tomato resistance to bacterial pathogens. United States Department of Agriculture, enero de 2012. http://dx.doi.org/10.32747/2012.7699834.bard.
Texto completoCoplin, David L., Shulamit Manulis y Isaac Barash. roles Hrp-dependent effector proteins and hrp gene regulation as determinants of virulence and host-specificity in Erwinia stewartii and E. herbicola pvs. gypsophilae and betae. United States Department of Agriculture, junio de 2005. http://dx.doi.org/10.32747/2005.7587216.bard.
Texto completoDickman, Martin B. y Oded Yarden. Genetic and chemical intervention in ROS signaling pathways affecting development and pathogenicity of Sclerotinia sclerotiorum. United States Department of Agriculture, julio de 2015. http://dx.doi.org/10.32747/2015.7699866.bard.
Texto completo