Literatura académica sobre el tema "Hyperparameter selection and optimization"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hyperparameter selection and optimization".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hyperparameter selection and optimization"
Sun, Yunlei, Huiquan Gong, Yucong Li, and Dalin Zhang. "Hyperparameter Importance Analysis based on N-RReliefF Algorithm." International Journal of Computers Communications & Control 14, no. 4 (2019): 557–73. http://dx.doi.org/10.15837/ijccc.2019.4.3593.
Texto completoBengio, Yoshua. "Gradient-Based Optimization of Hyperparameters." Neural Computation 12, no. 8 (2000): 1889–900. http://dx.doi.org/10.1162/089976600300015187.
Texto completoNystrup, Peter, Erik Lindström, and Henrik Madsen. "Hyperparameter Optimization for Portfolio Selection." Journal of Financial Data Science 2, no. 3 (2020): 40–54. http://dx.doi.org/10.3905/jfds.2020.1.035.
Texto completoLi, Yang, Jiawei Jiang, Jinyang Gao, Yingxia Shao, Ce Zhang, and Bin Cui. "Efficient Automatic CASH via Rising Bandits." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4763–71. http://dx.doi.org/10.1609/aaai.v34i04.5910.
Texto completoLi, Yuqi. "Discrete Hyperparameter Optimization Model Based on Skewed Distribution." Mathematical Problems in Engineering 2022 (August 9, 2022): 1–10. http://dx.doi.org/10.1155/2022/2835596.
Texto completoMohapatra, Shubhankar, Sajin Sasy, Xi He, Gautam Kamath, and Om Thakkar. "The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 7 (2022): 7806–13. http://dx.doi.org/10.1609/aaai.v36i7.20749.
Texto completoZLOBIN, Mykola, and Volodymyr BAZYLEVYCH. "BAYESIAN OPTIMIZATION FOR TUNING HYPERPARAMETRS OF MACHINE LEARNING MODELS: A PERFORMANCE ANALYSIS IN XGBOOST." Computer systems and information technologies, no. 1 (March 27, 2025): 141–46. https://doi.org/10.31891/csit-2025-1-16.
Texto completoHafidi, Nasreddine, Zakaria Khoudi, Mourad Nachaoui, and Soufiane Lyaqini. "Cryptocurrency Price Prediction with Genetic Algorithm-based Hyperparameter Optimization." Statistics, Optimization & Information Computing 13, no. 5 (2025): 1947–71. https://doi.org/10.19139/soic-2310-5070-2035.
Texto completoKurnia, Deni, Muhammad Itqan Mazdadi, Dwi Kartini, Radityo Adi Nugroho, and Friska Abadi. "Seleksi Fitur dengan Particle Swarm Optimization pada Klasifikasi Penyakit Parkinson Menggunakan XGBoost." Jurnal Teknologi Informasi dan Ilmu Komputer 10, no. 5 (2023): 1083–94. http://dx.doi.org/10.25126/jtiik.20231057252.
Texto completoKurnia, Deni, Muhammad Itqan Mazdadi, Dwi Kartini, Radityo Adi Nugroho, and Friska Abadi. "Seleksi Fitur dengan Particle Swarm Optimization pada Klasifikasi Penyakit Parkinson Menggunakan XGBoost." Jurnal Teknologi Informasi dan Ilmu Komputer 10, no. 5 (2023): 1083–94. https://doi.org/10.25126/jtiik.2023107252.
Texto completoTesis sobre el tema "Hyperparameter selection and optimization"
Ndiaye, Eugene. "Safe optimization algorithms for variable selection and hyperparameter tuning." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT004/document.
Texto completoNdiaye, Eugene. "Safe optimization algorithms for variable selection and hyperparameter tuning." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT004.
Texto completoThornton, Chris. "Auto-WEKA : combined selection and hyperparameter optimization of supervised machine learning algorithms." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/46177.
Texto completoBertrand, Quentin. "Hyperparameter selection for high dimensional sparse learning : application to neuroimaging." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG054.
Texto completoThomas, Janek [Verfasser], and Bernd [Akademischer Betreuer] Bischl. "Gradient boosting in automatic machine learning: feature selection and hyperparameter optimization / Janek Thomas ; Betreuer: Bernd Bischl." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1189584808/34.
Texto completoNakisa, Bahareh. "Emotion classification using advanced machine learning techniques applied to wearable physiological signals data." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/129875/9/Bahareh%20Nakisa%20Thesis.pdf.
Texto completoKlein, Aaron [Verfasser], and Frank [Akademischer Betreuer] Hutter. "Efficient bayesian hyperparameter optimization." Freiburg : Universität, 2020. http://d-nb.info/1214592961/34.
Texto completoGousseau, Clément. "Hyperparameter Optimization for Convolutional Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272107.
Texto completoFirmin, Thomas. "Parallel hyperparameter optimization of spiking neural networks." Electronic Thesis or Diss., Université de Lille (2022-....), 2025. http://www.theses.fr/2025ULILB004.
Texto completoLévesque, Julien-Charles. "Bayesian hyperparameter optimization : overfitting, ensembles and conditional spaces." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/28364.
Texto completoLibros sobre el tema "Hyperparameter selection and optimization"
Agrawal, Tanay. Hyperparameter Optimization in Machine Learning. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6579-6.
Texto completoZheng, Minrui. Spatially Explicit Hyperparameter Optimization for Neural Networks. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5399-5.
Texto completoPappalardo, Elisa, Panos M. Pardalos, and Giovanni Stracquadanio. Optimization Approaches for Solving String Selection Problems. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9053-1.
Texto completoLi︠a︡tkher, V. M. Wind power: Turbine design, selection, and optimization. Scrivener Publishing, Wiley, 2014.
Buscar texto completoEast, Donald R. Optimization technology for leach and liner selection. Society of Mining Engineers, 1987.
Buscar texto completoZheng, Maosheng, Haipeng Teng, Jie Yu, Ying Cui, and Yi Wang. Probability-Based Multi-objective Optimization for Material Selection. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-3351-6.
Texto completoZheng, Maosheng, Jie Yu, Haipeng Teng, Ying Cui, and Yi Wang. Probability-Based Multi-objective Optimization for Material Selection. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-3939-8.
Texto completoToy, Ayhan Özgür. Route, aircraft prioritization and selection for airlift mobility optimization. Naval Postgraduate School, 1996.
Buscar texto completoS, Handen Jeffrey, ed. Industrialization of drug discovery: From target selection through lead optimization. Dekker/CRC Press, 2005.
Buscar texto completoBoyle, Phelim P. Optimal portfolio selection with transaction costs. University of Toronto, Dept. of Statistics, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Hyperparameter selection and optimization"
Brazdil, Pavel, Jan N. van Rijn, Carlos Soares, and Joaquin Vanschoren. "Metalearning for Hyperparameter Optimization." In Metalearning. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-67024-5_6.
Texto completoSingh, Ikjyot, Digvijay Puri, Gursimar Singh, and Monika Singh. "Intelligent model selection and hyperparameter optimization: MLOPS." In Computational Methods in Science and Technology. CRC Press, 2024. http://dx.doi.org/10.1201/9781003501244-82.
Texto completoBrazdil, Pavel, Jan N. van Rijn, Carlos Soares, and Joaquin Vanschoren. "Metalearning Approaches for Algorithm Selection I (Exploiting Rankings)." In Metalearning. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-67024-5_2.
Texto completoSchröder, Sietse, Mitra Baratchi, and Jan N. van Rijn. "Overfitting in Combined Algorithm Selection and Hyperparameter Optimization." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-91398-3_14.
Texto completoGoshtasbpour, Shirin, and Fernando Perez-Cruz. "Optimization of Annealed Importance Sampling Hyperparameters." In Machine Learning and Knowledge Discovery in Databases. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26419-1_11.
Texto completoKotthoff, Lars, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown. "Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA." In Automated Machine Learning. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05318-5_4.
Texto completoTaubert, Oskar, Marie Weiel, Daniel Coquelin, et al. "Massively Parallel Genetic Optimization Through Asynchronous Propagation of Populations." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32041-5_6.
Texto completoEsuli, Andrea, Alessandro Fabris, Alejandro Moreo, and Fabrizio Sebastiani. "Evaluation of Quantification Algorithms." In The Information Retrieval Series. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20467-8_3.
Texto completoPonnuru, Suchith, and Lekha S. Nair. "Feature Extraction and Selection with Hyperparameter Optimization for Mitosis Detection in Breast Histopathology Images." In Data Intelligence and Cognitive Informatics. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6004-8_55.
Texto completoGuan, Ruei-Sing, Yu-Chee Tseng, Jen-Jee Chen, and Po-Tsun Kuo. "Combined Bayesian and RNN-Based Hyperparameter Optimization for Efficient Model Selection Applied for autoML." In Communications in Computer and Information Science. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-9582-8_8.
Texto completoActas de conferencias sobre el tema "Hyperparameter selection and optimization"
Ciran, Ahmet, Serdar Ertem, and Erdal Özbay. "Optimization-Based Hyperparameter Selection in Deep Learning Methods for Detection of Lung Diseases." In 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, 2024. http://dx.doi.org/10.1109/idap64064.2024.10710803.
Texto completoPedada, Sujata, Gangula Rajeswara Rao, and B. Jagadeesh. "FSHOADC - Feature Selection and Hyperparameter Optimization Based Arrhythmia Detection and Classification: A Machine Learning Approach for Arrhythmia Detection using ECG Signals." In 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, 2024. https://doi.org/10.1109/scopes64467.2024.10990942.
Texto completoRaponi, Antonello, and Zoltan Nagy. "CompArt: Next-Generation Compartmental Models for Complex Systems Powered by Artificial Intelligence." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.186609.
Texto completoEsposito, Flora, Ulderico Di Caprio, Bruno Rodrigues, Florence H. Vermeire, Idelfonso B.R.�Nogueira, and M. Enis Leblebici. "Predicting Surface Tension of Organic Molecules using COSMO-RS Theory and Machine Learning." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.187062.
Texto completoJiang, Jiantong, Zeyi Wen, Atif Mansoor, and Ajmal Mian. "Efficient Hyperparameter Optimization with Adaptive Fidelity Identification." In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.02474.
Texto completoSudheerbabu, Gaadha, Tanwir Ahmad, Dragos Truscan, Jüri Vain, and Ivan Porres. "Iterative Optimization of Hyperparameter-based Metamorphic Transformations." In 2024 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 2024. http://dx.doi.org/10.1109/icstw60967.2024.00016.
Texto completoLinkous, Lauren, Jonathan Lundquist, Michael Suche, and Erdem Topsakal. "Machine Learning Assisted Hyperparameter Tuning for Optimization." In 2024 IEEE INC-USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2024. http://dx.doi.org/10.23919/inc-usnc-ursi61303.2024.10632482.
Texto completoKarthik, D. V. N. S. Murali, Hemanta Kumar Bhuyan, and Biswajit Brahma. "Hyperparameter-Based Feature Selection for Breast Cancer Data Analysis." In 2025 International Conference in Advances in Power, Signal, and Information Technology (APSIT). IEEE, 2025. https://doi.org/10.1109/apsit63993.2025.11086135.
Texto completoSahu, Pranav, O. P. Vyas, Rishita Barnwal, Ayushi Singla, and Priyanshu. "Enhancing Industrial IoT Intrusion Detection with Hyperparameter Optimization." In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10723326.
Texto completoLaassar, Imane, Moulay Youssef Hadi, Amine Mrhari, and Soukaina Ouhame. "Enhancing Industrial IoT Intrusion Detection with Hyperparameter Optimization." In 2024 7th International Conference on Advanced Communication Technologies and Networking (CommNet). IEEE, 2024. https://doi.org/10.1109/commnet63022.2024.10793331.
Texto completoInformes sobre el tema "Hyperparameter selection and optimization"
Agnihotri, Souparni. Hyperparameter Optimization on Neural Machine Translation. Iowa State University, 2019. http://dx.doi.org/10.31274/cc-20240624-852.
Texto completoFilippov, A., I. Goumiri, and B. Priest. Genetic Algorithm for Hyperparameter Optimization in Gaussian Process Modeling. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1659396.
Texto completoKamath, C. Intelligent Sampling for Surrogate Modeling, Hyperparameter Optimization, and Data Analysis. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1836193.
Texto completoTropp, Joel A. Column Subset Selection, Matrix Factorization, and Eigenvalue Optimization. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada633832.
Texto completoEdwards, D. A., and M. J. Syphers. Parameter selection for the SSC trade-offs and optimization. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/67463.
Texto completoLi, Zhenjiang, and J. J. Garcia-Luna-Aceves. A Distributed Approach for Multi-Constrained Path Selection and Routing Optimization. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada467530.
Texto completoKnapp, Adam C., and Kevin J. Johnson. Using Fisher Information Criteria for Chemical Sensor Selection via Convex Optimization Methods. Defense Technical Information Center, 2016. http://dx.doi.org/10.21236/ada640843.
Texto completoSelbach-Allen, Megan E. Using Biomechanical Optimization To Interpret Dancers' Pose Selection For A Partnered Spin. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada548785.
Texto completoCole, J. Vernon, Abhra Roy, Ashok Damle, et al. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1052343.
Texto completoWeller, Joel I., Ignacy Misztal, and Micha Ron. Optimization of methodology for genomic selection of moderate and large dairy cattle populations. United States Department of Agriculture, 2015. http://dx.doi.org/10.32747/2015.7594404.bard.
Texto completo