Artículos de revistas sobre el tema "Hydroxyl radical footprinting (HRF)"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Hydroxyl radical footprinting (HRF).

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hydroxyl radical footprinting (HRF)".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Chea, Emily E. y Lisa M. Jones. "Analyzing the structure of macromolecules in their native cellular environment using hydroxyl radical footprinting". Analyst 143, n.º 4 (2018): 798–807. http://dx.doi.org/10.1039/c7an01323j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kiselar, Janna y Mark R. Chance. "High-Resolution Hydroxyl Radical Protein Footprinting: Biophysics Tool for Drug Discovery". Annual Review of Biophysics 47, n.º 1 (20 de mayo de 2018): 315–33. http://dx.doi.org/10.1146/annurev-biophys-070317-033123.

Texto completo
Resumen
Hydroxyl radical footprinting (HRF) of proteins with mass spectrometry (MS) is a widespread approach for assessing protein structure. Hydroxyl radicals react with a wide variety of protein side chains, and the ease with which radicals can be generated (by radiolysis or photolysis) has made the approach popular with many laboratories. As some side chains are less reactive and thus cannot be probed, additional specific and nonspecific labeling reagents have been introduced to extend the approach. At the same time, advances in liquid chromatography and MS approaches permit an examination of the labeling of individual residues, transforming the approach to high resolution. Lastly, advances in understanding of the chemistry of the approach have led to the determination of absolute protein topologies from HRF data. Overall, the technology can provide precise and accurate measures of side-chain solvent accessibility in a wide range of interesting and useful contexts for the study of protein structure and dynamics in both academia and industry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Carey, M. y S. T. Smale. "Hydroxyl-Radical Footprinting". Cold Spring Harbor Protocols 2007, n.º 24 (1 de diciembre de 2007): pdb.prot4810. http://dx.doi.org/10.1101/pdb.prot4810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tullius, T. D. "DNA footprinting with hydroxyl radical". Nature 332, n.º 6165 (abril de 1988): 663–64. http://dx.doi.org/10.1038/332663a0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Tullius, Thomas D. "DNA Footprinting with the Hydroxyl Radical". Free Radical Research Communications 13, n.º 1 (enero de 1991): 521–29. http://dx.doi.org/10.3109/10715769109145826.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Leser, Micheal, Jessica R. Chapman, Michelle Khine, Jonathan Pegan, Matt Law, Mohammed El Makkaoui, Beatrix M. Ueberheide y Michael Brenowitz. "Chemical Generation of Hydroxyl Radical for Oxidative ‘Footprinting’". Protein & Peptide Letters 26, n.º 1 (13 de febrero de 2019): 61–69. http://dx.doi.org/10.2174/0929866526666181212164812.

Texto completo
Resumen
Background: For almost four decades, hydroxyl radical chemically generated by Fenton chemistry has been a mainstay for the oxidative ‘footprinting’ of macromolecules. Objective: In this article, we start by reviewing the application of chemical generation of hydroxyl radical to the development of oxidative footprinting of DNA and RNA and the subsequent application of the method to oxidative footprinting of proteins. We next discuss a novel strategy for generating hydroxyl radicals by Fenton chemistry that immobilizes catalytic iron on a solid surface (Pyrite Shrink Wrap laminate) for the application of nucleic acid and protein footprinting. Method: Pyrite Shrink-Wrap Laminate is fabricated by depositing pyrite (Fe-S2, aka ‘fool’s gold’) nanocrystals onto thermolabile plastic (Shrinky Dink). The laminate can be thermoformed into a microtiter plate format into which samples are deposited for oxidation. Results: We demonstrate the utility of the Pyrite Shrink-Wrap Laminate for the chemical generation of hydroxyl radicals by mapping the surface of the T-cell co-stimulatory protein Programmed Death – 1 (PD-1) and the interface of the complex with its ligand PD-L1. Conclusion: We have developed and validated an affordable and reliable benchtop method of hydroxyl radical generation that will broaden the application of protein oxidative footprinting. Due to the minimal equipment required to implement this method, it should be easily adaptable by many laboratories with access to mass spectrometry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Gerasimova, N. S. y V. M. Studitsky. "Hydroxyl radical footprinting of fluorescently labeled DNA". Moscow University Biological Sciences Bulletin 71, n.º 2 (abril de 2016): 93–96. http://dx.doi.org/10.3103/s0096392516020036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jain, Swapan S. y Thomas D. Tullius. "Footprinting protein–DNA complexes using the hydroxyl radical". Nature Protocols 3, n.º 6 (junio de 2008): 1092–100. http://dx.doi.org/10.1038/nprot.2008.72.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nilsen, Timothy W. "Mapping RNA–Protein Interactions Using Hydroxyl-Radical Footprinting". Cold Spring Harbor Protocols 2014, n.º 12 (diciembre de 2014): pdb.prot080952. http://dx.doi.org/10.1101/pdb.prot080952.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Leser, Micheal, Jonathan Pegan, Mohammed El Makkaoui, Joerg C. Schlatterer, Michelle Khine, Matt Law y Michael Brenowitz. "Protein footprinting by pyrite shrink-wrap laminate". Lab on a Chip 15, n.º 7 (2015): 1646–50. http://dx.doi.org/10.1039/c4lc01288g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Loginov, Dmitry S., Jan Fiala, Peter Brechlin, Gary Kruppa y Petr Novak. "Hydroxyl radical footprinting analysis of a human haptoglobin-hemoglobin complex". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1870, n.º 2 (febrero de 2022): 140735. http://dx.doi.org/10.1016/j.bbapap.2021.140735.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Watson, Caroline y Joshua S. Sharp. "Conformational Analysis of Therapeutic Proteins by Hydroxyl Radical Protein Footprinting". AAPS Journal 14, n.º 2 (2 de marzo de 2012): 206–17. http://dx.doi.org/10.1208/s12248-012-9336-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Sclavi, B. "RNA Folding at Millisecond Intervals by Synchrotron Hydroxyl Radical Footprinting". Science 279, n.º 5358 (20 de marzo de 1998): 1940–43. http://dx.doi.org/10.1126/science.279.5358.1940.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kiselar, Janna G. y Mark R. Chance. "Future directions of structural mass spectrometry using hydroxyl radical footprinting". Journal of Mass Spectrometry 45, n.º 12 (1 de septiembre de 2010): 1373–82. http://dx.doi.org/10.1002/jms.1808.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Hao, Yumeng, Jen Bohon, Ryan Hulscher, Mollie C. Rappé, Sayan Gupta, Tadepalli Adilakshmi y Sarah A. Woodson. "Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays". Current Protocols in Nucleic Acid Chemistry 73, n.º 1 (junio de 2018): e52. http://dx.doi.org/10.1002/cpnc.52.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Ralston, Corie Y. y Joshua S. Sharp. "Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods". Antibodies 11, n.º 4 (14 de noviembre de 2022): 71. http://dx.doi.org/10.3390/antib11040071.

Texto completo
Resumen
Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody–antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Xie, Boer y Joshua S. Sharp. "Hydroxyl Radical Dosimetry for High Flux Hydroxyl Radical Protein Footprinting Applications Using a Simple Optical Detection Method". Analytical Chemistry 87, n.º 21 (15 de octubre de 2015): 10719–23. http://dx.doi.org/10.1021/acs.analchem.5b02865.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Shi, Liuqing y Michael L. Gross. "Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry". Protein & Peptide Letters 26, n.º 1 (13 de febrero de 2019): 27–34. http://dx.doi.org/10.2174/0929866526666181128124554.

Texto completo
Resumen
Background: Determination of the composition and some structural features of macromolecules can be achieved by using structural proteomics approaches coupled with mass spectrometry (MS). One approach is hydroxyl radical protein footprinting whereby amino-acid side chains are modified with reactive reagents to modify irreversibly a protein side chain. The outcomes, when deciphered with mass-spectrometry-based proteomics, can increase our knowledge of structure, assembly, and conformational dynamics of macromolecules in solution. Generating the hydroxyl radicals by laser irradiation, Hambly and Gross developed the approach of Fast Photochemical Oxidation of Proteins (FPOP), which labels proteins on the sub millisecond time scale and provides, with MS analysis, deeper understanding of protein structure and protein-ligand and protein- protein interactions. This review highlights the fundamentals of FPOP and provides descriptions of hydroxyl-radical and other radical and carbene generation, of the hydroxyl labeling of proteins, and of determination of protein modification sites. We also summarize some recent applications of FPOP coupled with MS in protein footprinting. Conclusion: We survey results that show the capability of FPOP for qualitatively measuring protein solvent accessibility on the residue level. To make these approaches more valuable, we describe recent method developments that increase FPOP’s quantitative capacity and increase the spatial protein sequence coverage. To improve FPOP further, several new labeling reagents including carbenes and other radicals have been developed. These growing improvements will allow oxidative- footprinting methods coupled with MS to play an increasingly significant role in determining the structure and dynamics of macromolecules and their assemblies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Morton, Simon A., Sayan Gupta, Christopher J. Petzold y Corie Y. Ralston. "Recent Advances in X-Ray Hydroxyl Radical Footprinting at the Advanced Light Source Synchrotron". Protein & Peptide Letters 26, n.º 1 (13 de febrero de 2019): 70–75. http://dx.doi.org/10.2174/0929866526666181128125725.

Texto completo
Resumen
Background: Synchrotron hydroxyl radical footprinting is a relatively new structural method used to investigate structural features and conformational changes of nucleic acids and proteins in the solution state. It was originally developed at the National Synchrotron Light Source at Brookhaven National Laboratory in the late nineties, and more recently, has been established at the Advanced Light Source at Lawrence Berkeley National Laboratory. The instrumentation for this method is an active area of development, and includes methods to increase dose to the samples while implementing high-throughput sample delivery methods. Conclusion: Improving instrumentation to irradiate biological samples in real time using a sample droplet generator and inline fluorescence monitoring to rapidly determine dose response curves for samples will significantly increase the range of biological problems that can be investigated using synchrotron hydroxyl radical footprinting.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Maleknia, Simin D. y Kevin M. Downard. "Protein Footprinting with Radical Probe Mass Spectrometry- Two Decades of Achievement". Protein & Peptide Letters 26, n.º 1 (13 de febrero de 2019): 4–15. http://dx.doi.org/10.2174/0929866526666181128124241.

Texto completo
Resumen
Background: Radical Probe Mass Spectrometry (RP-MS) describes a pioneering methodology in structural biology that enables the study of protein structures, their interactions, and dynamics on fast timescales (down to sub-milliseconds). Hydroxyl radicals (•OH) generated directly from water within aqueous solutions induce the oxidation of reactive, solvent accessible amino acid side chains that are then analyzed by mass spectrometry. Introduced in 1998 at the American Society for Mass Spectrometry annual conference, RP-MS was first published on in 1999. Objective: This review article describes developments and applications of the RP-MS methodology over the past two decades. Methods: The RP-MS method has been variously referred to as synchrotron X-ray radiolysis footprinting, Hydroxyl Radical Protein Footprinting (HRPF), X-ray Footprinting with Mass Spectrometry (XF-MS), Fast Photochemical Oxidation of Proteins (FPOP), oxidative labelling, covalent oxidative labelling, and even the Stability of Proteins from Rates of Oxidation (SPROX). Results: The article describes the utility of hydroxyl radicals as a protein structural probe, the advantages of RP-MS in comparison to other MS-based approaches, its proof of concept using ion mobility mass spectrometry, its application to protein structure, folding, complex and aggregation studies, its extension to study the onset of protein damage, its implementation using a high throughput sample loading approach, and the development of protein docking algorithms to aid with data analysis and visualization. Conclusion: RP-MS represents a powerful new structural approach that can aid in our understanding of the structure and functions of proteins, and the impact of sustained oxidation on proteins in disease pathogenesis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Zhu, Yi, Tiannan Guo, Jung Eun Park, Xin Li, Wei Meng, Arnab Datta, Marshall Bern, Sai Kiang Lim y Siu Kwan Sze. "Elucidatingin VivoStructural Dynamics in Integral Membrane Protein by Hydroxyl Radical Footprinting". Molecular & Cellular Proteomics 8, n.º 8 (26 de mayo de 2009): 1999–2010. http://dx.doi.org/10.1074/mcp.m900081-mcp200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Garcia, Natalie K., Alavattam Sreedhara, Galahad Deperalta y Aaron T. Wecksler. "Optimizing Hydroxyl Radical Footprinting Analysis of Biotherapeutics Using Internal Standard Dosimetry". Journal of the American Society for Mass Spectrometry 31, n.º 7 (14 de mayo de 2020): 1563–71. http://dx.doi.org/10.1021/jasms.0c00146.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Mah, Stanley C., Craig A. Townsend y Thomas D. Tullius. "Hydroxyl radical footprinting of calicheamicin. Relationship of DNA binding to cleavage". Biochemistry 33, n.º 2 (enero de 1994): 614–21. http://dx.doi.org/10.1021/bi00168a029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Wang, Liwen y Mark R. Chance. "Structural Mass Spectrometry of Proteins Using Hydroxyl Radical Based Protein Footprinting". Analytical Chemistry 83, n.º 19 (octubre de 2011): 7234–41. http://dx.doi.org/10.1021/ac200567u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Watson, Caroline, Ireneusz Janik, Tiandi Zhuang, Olga Charvátová, Robert J. Woods y Joshua S. Sharp. "Pulsed Electron Beam Water Radiolysis for Submicrosecond Hydroxyl Radical Protein Footprinting". Analytical Chemistry 81, n.º 7 (abril de 2009): 2496–505. http://dx.doi.org/10.1021/ac802252y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Adilakshmi, T. "Hydroxyl radical footprinting in vivo: mapping macromolecular structures with synchrotron radiation". Nucleic Acids Research 34, n.º 8 (28 de abril de 2006): e64-e64. http://dx.doi.org/10.1093/nar/gkl291.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Wang, X. D. y R. A. Padgett. "Hydroxyl radical "footprinting" of RNA: application to pre-mRNA splicing complexes." Proceedings of the National Academy of Sciences 86, n.º 20 (1 de octubre de 1989): 7795–99. http://dx.doi.org/10.1073/pnas.86.20.7795.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Hulscher, Ryan. "Using Hydroxyl Radical Footprinting to Observe Ribosome Assembly Intermediates in vivo". Biophysical Journal 108, n.º 2 (enero de 2015): 391a. http://dx.doi.org/10.1016/j.bpj.2014.11.2143.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hampel, Ken J. y John M. Burke. "Time-Resolved Hydroxyl-Radical Footprinting of RNA Using Fe(II)-EDTA". Methods 23, n.º 3 (marzo de 2001): 233–39. http://dx.doi.org/10.1006/meth.2000.1134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

BROWN, Philip M. y Keith R. FOX. "DNA triple-helix formation on nucleosome-bound poly(dA)·poly(dT) tracts". Biochemical Journal 333, n.º 2 (15 de julio de 1998): 259–67. http://dx.doi.org/10.1042/bj3330259.

Texto completo
Resumen
We have used DNase I and hydroxyl-radical footprinting to examine the formation of intermolecular DNA triple helices on nucleosome-bound DNA fragments containing An·Tn tracts. We found that it is possible to form triplexes on these nucleosome-bound DNAs, but the stability of the complexes depends on the orientation of the A tract with respect to the protein surface. Hydroxyl-radical cleavage of these complexes suggests that the DNA fragments are still associated with the nucleosome. However, the phased cleavage pattern is lost in the vicinity of the triplex, suggesting that the DNA has locally moved away from the protein surface.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Aprahamian, Melanie L., Emily E. Chea, Lisa M. Jones y Steffen Lindert. "Rosetta Protein Structure Prediction from Hydroxyl Radical Protein Footprinting Mass Spectrometry Data". Analytical Chemistry 90, n.º 12 (6 de junio de 2018): 7721–29. http://dx.doi.org/10.1021/acs.analchem.8b01624.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Deperalta, Galahad, Melissa Alvarez, Charity Bechtel, Ken Dong, Ross McDonald y Victor Ling. "Structural analysis of a therapeutic monoclonal antibody dimer by hydroxyl radical footprinting". mAbs 5, n.º 1 (enero de 2013): 86–101. http://dx.doi.org/10.4161/mabs.22964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kiselar, Janna G., Manish Datt, Mark R. Chance y Michael A. Weiss. "Structural Analysis of Proinsulin Hexamer Assembly by Hydroxyl Radical Footprinting and Computational Modeling". Journal of Biological Chemistry 286, n.º 51 (26 de octubre de 2011): 43710–16. http://dx.doi.org/10.1074/jbc.m111.297853.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Calabrese, Antonio N., James R. Ault, Sheena E. Radford y Alison E. Ashcroft. "Using hydroxyl radical footprinting to explore the free energy landscape of protein folding". Methods 89 (noviembre de 2015): 38–44. http://dx.doi.org/10.1016/j.ymeth.2015.02.018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Li, Xiaoyan, Zixuan Li, Boer Xie y Joshua S. Sharp. "Supercharging by m-NBA Improves ETD-Based Quantification of Hydroxyl Radical Protein Footprinting". Journal of The American Society for Mass Spectrometry 26, n.º 8 (28 de abril de 2015): 1424–27. http://dx.doi.org/10.1007/s13361-015-1129-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Rinas, Aimee, Jessica A. Espino y Lisa M. Jones. "An efficient quantitation strategy for hydroxyl radical-mediated protein footprinting using Proteome Discoverer". Analytical and Bioanalytical Chemistry 408, n.º 11 (12 de febrero de 2016): 3021–31. http://dx.doi.org/10.1007/s00216-016-9369-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Shaytan, Alexey K., Hua Xiao, Grigoriy A. Armeev, Daria A. Gaykalova, Galina A. Komarova, Carl Wu, Vasily M. Studitsky, David Landsman y Anna R. Panchenko. "Structural interpretation of DNA–protein hydroxyl-radical footprinting experiments with high resolution using HYDROID". Nature Protocols 13, n.º 11 (19 de octubre de 2018): 2535–56. http://dx.doi.org/10.1038/s41596-018-0048-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Portugal, J. y M. J. Waring. "Hydroxyl radical footprinting of the sequence-selective binding of netropsin and distamycin to DNA". FEBS Letters 225, n.º 1-2 (10 de diciembre de 1987): 195–200. http://dx.doi.org/10.1016/0014-5793(87)81156-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

He, Gaofei, Elena Vasilieva, James K. Bashkin y Cynthia M. Dupureur. "Mapping small DNA ligand hydroxyl radical footprinting and affinity cleavage products for capillary electrophoresis". Analytical Biochemistry 439, n.º 2 (agosto de 2013): 99–101. http://dx.doi.org/10.1016/j.ab.2013.04.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Li, Zixuan, Heather Moniz, Shuo Wang, Annapoorani Ramiah, Fuming Zhang, Kelley W. Moremen, Robert J. Linhardt y Joshua S. Sharp. "High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface". Journal of Biological Chemistry 290, n.º 17 (9 de marzo de 2015): 10729–40. http://dx.doi.org/10.1074/jbc.m115.648410.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Saladino, Jessica, Mian Liu, David Live y Joshua S. Sharp. "Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting". Journal of the American Society for Mass Spectrometry 20, n.º 6 (junio de 2009): 1123–26. http://dx.doi.org/10.1016/j.jasms.2009.02.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Oztug Durer, Zeynep A., J. K. Amisha Kamal, Sabrina Benchaar, Mark R. Chance y Emil Reisler. "Myosin Binding Surface on Actin Probed by Hydroxyl Radical Footprinting and Site-Directed Labels". Journal of Molecular Biology 414, n.º 2 (noviembre de 2011): 204–16. http://dx.doi.org/10.1016/j.jmb.2011.09.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Kimball, A. S., G. Milman y T. D. Tullius. "High-resolution footprints of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1". Molecular and Cellular Biology 9, n.º 6 (junio de 1989): 2738–42. http://dx.doi.org/10.1128/mcb.9.6.2738-2742.1989.

Texto completo
Resumen
The DNA-binding domain of Epstein-Barr virus nuclear antigen 1 was found by hydroxyl radical footprinting to protect backbone positions on one side of its DNA-binding site. The guanines contacted in the major groove by the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 were identified by methylation protection. No difference was found in the interaction of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 with tandemly repeated and overlapping binding sites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Kimball, A. S., G. Milman y T. D. Tullius. "High-resolution footprints of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1." Molecular and Cellular Biology 9, n.º 6 (junio de 1989): 2738–42. http://dx.doi.org/10.1128/mcb.9.6.2738.

Texto completo
Resumen
The DNA-binding domain of Epstein-Barr virus nuclear antigen 1 was found by hydroxyl radical footprinting to protect backbone positions on one side of its DNA-binding site. The guanines contacted in the major groove by the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 were identified by methylation protection. No difference was found in the interaction of the DNA-binding domain of Epstein-Barr virus nuclear antigen 1 with tandemly repeated and overlapping binding sites.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Elliot, Marie A. y Brenda K. Leskiw. "The BldD Protein from Streptomyces coelicolor Is a DNA-Binding Protein". Journal of Bacteriology 181, n.º 21 (1 de noviembre de 1999): 6832–35. http://dx.doi.org/10.1128/jb.181.21.6832-6835.1999.

Texto completo
Resumen
ABSTRACT Gel mobility shift assays with His-tagged BldD isolated fromEscherichia coli have illustrated that BldD is capable of specifically recognizing its own promoter region. DNase I and hydroxyl radical footprinting assays have served to delimit the BldD binding site, revealing that BldD recognizes and binds to a site just upstream from, and overlapping with, the −10 region of the promoter. How BldD binds to its promoter and the effect this binding has on the expression of BldD are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Jain, Rohit, Donald Abel, Maksim Rakitin, Michael Sullivan, David T. Lodowski, Mark R. Chance y Erik R. Farquhar. "New high-throughput endstation to accelerate the experimental optimization pipeline for synchrotron X-ray footprinting". Journal of Synchrotron Radiation 28, n.º 5 (20 de julio de 2021): 1321–32. http://dx.doi.org/10.1107/s1600577521005026.

Texto completo
Resumen
Synchrotron X-ray footprinting (XF) is a growing structural biology technique that leverages radiation-induced chemical modifications via X-ray radiolysis of water to produce hydroxyl radicals that probe changes in macromolecular structure and dynamics in solution states of interest. The X-ray Footprinting of Biological Materials (XFP) beamline at the National Synchrotron Light Source II provides the structural biology community with access to instrumentation and expert support in the XF method, and is also a platform for development of new technological capabilities in this field. The design and implementation of a new high-throughput endstation device based around use of a 96-well PCR plate form factor and supporting diagnostic instrumentation for synchrotron XF is described. This development enables a pipeline for rapid comprehensive screening of the influence of sample chemistry on hydroxyl radical dose using a convenient fluorescent assay, illustrated here with a study of 26 organic compounds. The new high-throughput endstation device and sample evaluation pipeline now available at the XFP beamline provide the worldwide structural biology community with a robust resource for carrying out well optimized synchrotron XF studies of challenging biological systems with complex sample compositions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Baud, Anna, Florence Gonnet, Isabelle Salard, Maxime Le Mignon, Alexandre Giuliani, Pascal Mercère, Bianca Sclavi y Régis Daniel. "Probing the solution structure of Factor H using hydroxyl radical protein footprinting and cross-linking". Biochemical Journal 473, n.º 12 (10 de junio de 2016): 1805–19. http://dx.doi.org/10.1042/bcj20160225.

Texto completo
Resumen
The control protein Factor H (FH) is a crucial regulator of the innate immune complement system, where it is active on host cell membranes and in the fluid phase. Mutations impairing the binding capacity of FH lead to severe autoimmune diseases. Here, we studied the solution structure of full-length FH, in its free state and bound to the C3b complement protein. To do so, we used two powerful techniques, hydroxyl radical protein footprinting (HRPF) and chemical cross-linking coupled with mass spectrometry (MS), to probe the structural rearrangements and to identify protein interfaces. The footprint of C3b on the FH surface matches existing crystal structures of C3b complexed with the N- and C-terminal fragments of FH. In addition, we revealed the position of the central portion of FH in the protein complex. Moreover, cross-linking studies confirmed the involvement of the C-terminus in the dimerization of FH.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Woger, Johannes Wolfgang y Günther Koraimann. "Hydroxyl radical footprinting using PCR-generated fluorescent-labelled DNA fragments and the ALFexpres DNA sequencer". Technical Tips Online 2, n.º 1 (enero de 1997): 167–68. http://dx.doi.org/10.1016/s1366-2120(08)70074-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hulscher, Ryan M., Jen Bohon, Mollie C. Rappé, Sayan Gupta, Rhijuta D’Mello, Michael Sullivan, Corie Y. Ralston, Mark R. Chance y Sarah A. Woodson. "Probing the structure of ribosome assembly intermediates in vivo using DMS and hydroxyl radical footprinting". Methods 103 (julio de 2016): 49–56. http://dx.doi.org/10.1016/j.ymeth.2016.03.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Orphanides, George y Anthony Maxwell. "Evidence for a conformational change in the DNA gyrase–DNA complex from hydroxyl radical footprinting". Nucleic Acids Research 22, n.º 9 (1994): 1567–75. http://dx.doi.org/10.1093/nar/22.9.1567.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía