Artículos de revistas sobre el tema "Hydrophobicity scale"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hydrophobicity scale".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Peters, Christoph, and Arne Elofsson. "Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales?" Proteins: Structure, Function, and Bioinformatics 82, no. 9 (2014): 2190–98. http://dx.doi.org/10.1002/prot.24582.
Texto completoKoehler, Julia, Nils Woetzel, René Staritzbichler, Charles R. Sanders, and Jens Meiler. "A unified hydrophobicity scale for multispan membrane proteins." Proteins: Structure, Function, and Bioinformatics 76, no. 1 (2009): 13–29. http://dx.doi.org/10.1002/prot.22315.
Texto completoWang, Mengjie, Zilong Peng, Chi Li, et al. "Multi-Scale Structure and Directional Hydrophobicity of Titanium Alloy Surface Using Electrical Discharge." Micromachines 13, no. 6 (2022): 937. http://dx.doi.org/10.3390/mi13060937.
Texto completoLiu, Hong, Saman Dharmatilleke, and Andrew A. O. Tay. "A chip scale nanofluidic pump using electrically controllable hydrophobicity." Microsystem Technologies 16, no. 4 (2009): 561–70. http://dx.doi.org/10.1007/s00542-009-0960-9.
Texto completoWimley, William C., and Stephen H. White. "Experimentally determined hydrophobicity scale for proteins at membrane interfaces." Nature Structural & Molecular Biology 3, no. 10 (1996): 842–48. http://dx.doi.org/10.1038/nsb1096-842.
Texto completoUrry, Dan W., D. Channe Gowda, Timothy M. Parker, et al. "Hydrophobicity scale for proteins based on inverse temperature transitions." Biopolymers 32, no. 9 (1992): 1243–50. http://dx.doi.org/10.1002/bip.360320913.
Texto completoPark, Sohyun, Jooyoun Kim, and Chung Hee Park. "Influence of micro and nano-scale roughness on hydrophobicity of a plasma-treated woven fabric." Textile Research Journal 87, no. 2 (2016): 193–207. http://dx.doi.org/10.1177/0040517515627169.
Texto completoHuang, Xiaochuan, Chen Li, Kuichang Zuo, and Qilin Li. "Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation." Environmental Science & Technology 54, no. 23 (2020): 15395–404. http://dx.doi.org/10.1021/acs.est.0c03826.
Texto completoKapcha, Lauren H., and Peter J. Rossky. "A Simple Atomic-Level Hydrophobicity Scale Reveals Protein Interfacial Structure." Journal of Molecular Biology 426, no. 2 (2014): 484–98. http://dx.doi.org/10.1016/j.jmb.2013.09.039.
Texto completoKwon, Tae Woo, Matthew Stanley Ambrosia, Joonkyoung Jang, and Man Yeong Ha. "Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale." Journal of Mechanical Science and Technology 29, no. 4 (2015): 1663–71. http://dx.doi.org/10.1007/s12206-015-0338-0.
Texto completoMarx, Dagan, and Karen Fleming. "Side Chain Hydrophobicity Scale using the Tilted Beta-Barrel Protein PagP." Biophysical Journal 112, no. 3 (2017): 205a. http://dx.doi.org/10.1016/j.bpj.2016.11.1134.
Texto completoZhang, Wei Wei, Li Ying Qian, and Hui Ning Xiao. "Hydrophobicity of Beeswax-Chitosan Latex Coated Paper." Advanced Materials Research 936 (June 2014): 1077–81. http://dx.doi.org/10.4028/www.scientific.net/amr.936.1077.
Texto completoZhang, J. Y., L. J. Qin, F. G. Liu, and C. S. Lou. "Effects of controlled shot peening on multi-scale morphology and hydrophobicity of 316L stainless steel." Digest Journal of Nanomaterials and Biostructures 17, no. 4 (2022): 1151–61. http://dx.doi.org/10.15251/djnb.2022.174.1151.
Texto completoSrivastava, Sheenal, Yumi Patton, David W. Fisher, and Graham R. Wood. "Cotranslational Protein Folding and Terminus Hydrophobicity." Advances in Bioinformatics 2011 (June 6, 2011): 1–8. http://dx.doi.org/10.1155/2011/176813.
Texto completoNishikawa, Tsuyoshi, Hiroki Narita, Soichiro Ogi, Yoshikatsu Sato та Shigehiro Yamaguchi. "Hydrophobicity and CH/π-interaction-driven self-assembly of amphiphilic aromatic hydrocarbons into nanosheets". Chemical Communications 55, № 99 (2019): 14950–53. http://dx.doi.org/10.1039/c9cc08070h.
Texto completoYAMASHIRO, DONALD. "THE PURIFICATION OF PEPTIDES BY PARTITION CHROMATOGRAPHY BASED ON A HYDROPHOBICITY SCALE*." International Journal of Peptide and Protein Research 13, no. 1 (2009): 5–11. http://dx.doi.org/10.1111/j.1399-3011.1979.tb01843.x.
Texto completoMoon, C. P., and K. G. Fleming. "Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers." Proceedings of the National Academy of Sciences 108, no. 25 (2011): 10174–77. http://dx.doi.org/10.1073/pnas.1103979108.
Texto completoSinha, Arun Kumar, Mrinmoyee Basu, Mukul Pradhan, Sougata Sarkar, and Tarasankar Pal. "Fabrication of Large-Scale Hierarchical ZnO Hollow Spheroids for Hydrophobicity and Photocatalysis." Chemistry - A European Journal 16, no. 26 (2010): 7865–74. http://dx.doi.org/10.1002/chem.200903347.
Texto completoLi, Xin, Chen Wang, Guang Yi Sun, Xin Zhao, Hai Xia Zhang, and Gui Zhang Lu. "Research on the Hydrophobicity of Black Silicon Based on Virtual Process." Key Engineering Materials 503 (February 2012): 329–33. http://dx.doi.org/10.4028/www.scientific.net/kem.503.329.
Texto completoMonroe, Jacob I., Sally Jiao, R. Justin Davis, Dennis Robinson Brown, Lynn E. Katz, and M. Scott Shell. "Affinity of small-molecule solutes to hydrophobic, hydrophilic, and chemically patterned interfaces in aqueous solution." Proceedings of the National Academy of Sciences 118, no. 1 (2020): e2020205118. http://dx.doi.org/10.1073/pnas.2020205118.
Texto completoDannenhoffer-Lafage, Thomas, and Robert B. Best. "A Data-Driven Hydrophobicity Scale for Predicting Liquid–Liquid Phase Separation of Proteins." Journal of Physical Chemistry B 125, no. 16 (2021): 4046–56. http://dx.doi.org/10.1021/acs.jpcb.0c11479.
Texto completoHoffmann, Waldemar, Jennifer Langenhan, Susanne Huhmann, et al. "An Intrinsic Hydrophobicity Scale for Amino Acids and Its Application to Fluorinated Compounds." Angewandte Chemie International Edition 58, no. 24 (2019): 8216–20. http://dx.doi.org/10.1002/anie.201813954.
Texto completoYu, Hang, Bing Rui Lu, Hui Li, Jian Ying Li, and Ran Liu. "Fabrication of Nanostructured Hydrophobic Surfaces with Laser Interference Lithography." Advanced Materials Research 815 (October 2013): 457–64. http://dx.doi.org/10.4028/www.scientific.net/amr.815.457.
Texto completoMonroe, Jacob, Mikayla Barry, Audra DeStefano, et al. "Water Structure and Properties at Hydrophilic and Hydrophobic Surfaces." Annual Review of Chemical and Biomolecular Engineering 11, no. 1 (2020): 523–57. http://dx.doi.org/10.1146/annurev-chembioeng-120919-114657.
Texto completoMalm, Lisa, Ann-Sofi Kindstedt Danielsson, Anders Sand, Jan Rosenkranz, and Ingvar Ymén. "Application of Dynamic Vapor Sorption for evaluation of hydrophobicity in industrial-scale froth flotation." Minerals Engineering 127 (October 2018): 305–11. http://dx.doi.org/10.1016/j.mineng.2017.11.004.
Texto completoShoute, Lian C. T., Weidi Hua, Ryan Kisslinger, et al. "Threshold hydrophobicity for inhibition of salt scale formation on SAM-modified titania nanotube arrays." Applied Surface Science 473 (April 2019): 282–90. http://dx.doi.org/10.1016/j.apsusc.2018.11.173.
Texto completoXu, Wei, Qiu Feng An, and Wei Xu. "Fabrication of Super-Hydrophobic Textile Surface with Aminopolysiloxane and Nano-Silica via a Solution Immersion Process." Applied Mechanics and Materials 65 (June 2011): 136–40. http://dx.doi.org/10.4028/www.scientific.net/amm.65.136.
Texto completoZhu, Chongqin, Yurui Gao, Hui Li, et al. "Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network." Proceedings of the National Academy of Sciences 113, no. 46 (2016): 12946–51. http://dx.doi.org/10.1073/pnas.1616138113.
Texto completoYao, Dong, Guangfeng Shi, Jingran Zhang, and Siwei Meng. "An investigation on the adhesion of dual-scale micro-nano composite structure on the surface of aluminum." Surface Topography: Metrology and Properties 11, no. 2 (2023): 025026. http://dx.doi.org/10.1088/2051-672x/acdb89.
Texto completoZhu, Weibiao, Yazhou Xu, Jinxin He, and Xia Dong. "Transparent Superhydrophobic Coatings with Mechanical and Chemical Stability Prepared by Modified Polyhedral Oligosilsesquioxanes via UV-Curable Method." Coatings 13, no. 3 (2023): 498. http://dx.doi.org/10.3390/coatings13030498.
Texto completoIshihama, Yasushi, Yoshiya Oda, and Naoki Asakawa. "A Hydrophobicity Scale Based on the Migration Index from Microemulsion Electrokinetic Chromatography of Anionic Solutes." Analytical Chemistry 68, no. 6 (1996): 1028–32. http://dx.doi.org/10.1021/ac9510402.
Texto completoGrigoryan, Marine, Dmitry Shamshurin, Victor Spicer, and Oleg V. Krokhin. "Unifying Expression Scale for Peptide Hydrophobicity in Proteomic Reversed Phase High-Pressure Liquid Chromatography Experiments." Analytical Chemistry 85, no. 22 (2013): 10878–86. http://dx.doi.org/10.1021/ac402310t.
Texto completoHu, Keke, Bing Xu, and HuiBo Shao. "Determination of hydrophobicity scale of tetraphenylborate and its derivatives by ferrocene based three-phase electrodes." Electrochemistry Communications 50 (January 2015): 36–38. http://dx.doi.org/10.1016/j.elecom.2014.11.005.
Texto completoWhite, Stephen H., and Eric Lindner. "Determination of a Biological Hydrophobicity Scale for SecA- Guided Insertion of Single-Span Membrane Proteins." Biophysical Journal 118, no. 3 (2020): 368a. http://dx.doi.org/10.1016/j.bpj.2019.11.2109.
Texto completoLiu, Junling, Xicheng Bao, Yesheng Hao, et al. "Role of the Polar Proportion of Compound Collectors in Low-Rank Coal Flotation Upgrading: Insights from the Molecular Scale." Minerals 13, no. 4 (2023): 524. http://dx.doi.org/10.3390/min13040524.
Texto completoSochan, Agata, Michał Beczek, Rafał Mazur, Cezary Polakowski, Magdalena Ryżak, and Andrzej Bieganowski. "Splash erosion and surface deformation following a drop impact on the soil with different hydrophobicity levels and moisture content." PLOS ONE 18, no. 5 (2023): e0285611. http://dx.doi.org/10.1371/journal.pone.0285611.
Texto completoJankauskaitė, Virginija, Pranas Narmontas, and Algirdas Lazauskas. "Control of Polydimethylsiloxane Surface Hydrophobicity by Plasma Polymerized Hexamethyldisilazane Deposition." Coatings 9, no. 1 (2019): 36. http://dx.doi.org/10.3390/coatings9010036.
Texto completoFerrari, Michele, Francesca Cirisano, and M. Carmen Morán. "Mammalian Cell Spheroids on Mixed Organic–Inorganic Superhydrophobic Coating." Molecules 27, no. 4 (2022): 1247. http://dx.doi.org/10.3390/molecules27041247.
Texto completoMan-Chi Lo, Irene, Cheng-Hao Lee, and Howard M. Liljestrand. "Tricaprylmethylammonium bentonite compexes as adsorbents for benzene, toluene, ethylbenzene and xylene." Water Science and Technology 34, no. 7-8 (1996): 319–25. http://dx.doi.org/10.2166/wst.1996.0637.
Texto completoWang, Yongpeng, Pengtao Yan, Xintong Huo, Mengzhu Liu, Haibo Zhang, and Zhenhua Jiang. "3D network super-hydrophobic hexafluorbisphenol A poly(aryl ether ketone) membrane prepared by one-step electrospraying." High Performance Polymers 32, no. 10 (2020): 1094–101. http://dx.doi.org/10.1177/0954008320930064.
Texto completoLanrezac, André, and Marc Baaden. "UNILIPID, a Methodology for Energetically Accurate Prediction of Protein Insertion into Implicit Membranes of Arbitrary Shape." Membranes 13, no. 3 (2023): 362. http://dx.doi.org/10.3390/membranes13030362.
Texto completoBurton, Zachary, and Bharat Bhushan. "Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems." Nano Letters 5, no. 8 (2005): 1607–13. http://dx.doi.org/10.1021/nl050861b.
Texto completoHutteau, F., and M. Mathlouthi. "Physicochemical properties of sweeteners in artificial saliva and determination of a hydrophobicity scale for some sweeteners." Food Chemistry 63, no. 2 (1998): 199–206. http://dx.doi.org/10.1016/s0308-8146(98)00007-7.
Texto completoMayer, Peter Terry, Xiang, Riku Niemi, and Bradley D. Anderson. "A Hydrophobicity Scale for the Lipid Bilayer Barrier Domain from Peptide Permeabilities: Nonadditivities in Residue Contributions†." Biochemistry 42, no. 6 (2003): 1624–36. http://dx.doi.org/10.1021/bi026701l.
Texto completoWang, Mengjing, Tae-Jun Ko, Mashiyat Sumaiya Shawkat, et al. "Wafer-Scale Growth of 2D PtTe2 with Layer Orientation Tunable High Electrical Conductivity and Superior Hydrophobicity." ACS Applied Materials & Interfaces 12, no. 9 (2020): 10839–51. http://dx.doi.org/10.1021/acsami.9b21838.
Texto completoKnyazev, Denis G., Roland Kuttner, Mirjam Zimmermann, and Peter Pohl. "Equilibrium Sampling between Membrane Interior and the Aqueous SecYEG Channel Departs from the Biological Hydrophobicity Scale." Biophysical Journal 118, no. 3 (2020): 367a. http://dx.doi.org/10.1016/j.bpj.2019.11.2105.
Texto completoYang, Mei, Jian Zhang, Xin Guo, et al. "Effect of Phosphorylation on the Structure and Emulsification Properties of Different Fish Scale Gelatins." Foods 11, no. 6 (2022): 804. http://dx.doi.org/10.3390/foods11060804.
Texto completoMa, Xiaorui, Zeyi Huang, and Lin Feng. "Effects of the Deposition Mode and Heat Treatment on the Microstructure and Wettability of Y2O3 Coatings Prepared by Reactive Magnetron Sputtering." Coatings 12, no. 6 (2022): 790. http://dx.doi.org/10.3390/coatings12060790.
Texto completoRani, M. Jansi, M. Murugan, P. Subramaniam, and E. Subramanian. "A study on water hyacinth Eichhornia crassipes as oil sorbent." Journal of Applied and Natural Science 6, no. 1 (2014): 134–38. http://dx.doi.org/10.31018/jans.v6i1.389.
Texto completoHladikova, K., I. Ruzickova, P. Klucova, and J. Wanner. "An investigation into studying of the activated sludge foaming potential by using physicochemical parameters." Water Science and Technology 46, no. 1-2 (2002): 525–28. http://dx.doi.org/10.2166/wst.2002.0529.
Texto completo