Artículos de revistas sobre el tema "Hydrogen resist"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Hydrogen resist.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Hydrogen resist".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Horibe, Hideo, Masashi Yamamoto, Eiji Kusano, Tomokazu Ichikawa y Seiichi Tagawa. "Resist Removal by using Atomic Hydrogen". Journal of Photopolymer Science and Technology 21, n.º 2 (2008): 293–98. http://dx.doi.org/10.2494/photopolymer.21.293.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Horibe, H., M. Yamamoto, T. Maruoka, Y. Goto, A. Kono, I. Nishiyama y S. Tagawa. "Ion-implanted resist removal using atomic hydrogen". Thin Solid Films 519, n.º 14 (mayo de 2011): 4578–81. http://dx.doi.org/10.1016/j.tsf.2011.01.287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rommel, Marcus y Jürgen Weis. "Hydrogen silsesquioxane bilayer resists—Combining high resolution electron beam lithography and gentle resist removal". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 31, n.º 6 (noviembre de 2013): 06F102. http://dx.doi.org/10.1116/1.4822136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tsubouchi, Kazuo, Kazuya Masu y Keiichi Sasaki. "Area-Selective Aluminum Patterning Using Atomic Hydrogen Resist". Japanese Journal of Applied Physics 32, Part 1, No. 1B (30 de enero de 1993): 278–81. http://dx.doi.org/10.1143/jjap.32.278.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Manfrinato, Vitor R., Lin Lee Cheong, Huigao Duan, Donald Winston, Henry I. Smith y Karl K. Berggren. "Sub-5keV electron-beam lithography in hydrogen silsesquioxane resist". Microelectronic Engineering 88, n.º 10 (octubre de 2011): 3070–74. http://dx.doi.org/10.1016/j.mee.2011.05.024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Winston, D., B. M. Cord, B. Ming, D. C. Bell, W. F. DiNatale, L. A. Stern, A. E. Vladar et al. "Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, n.º 6 (2009): 2702. http://dx.doi.org/10.1116/1.3250204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Maruoka, Takeshi, Yousuke Goto, Masashi Yamamoto, Hideo Horibe, Eiji Kusano, Kazuhisa Takao y Seiichi Tagawa. "Relationship between the Thermal Hardening of Ion-Implanted Resist and the Resist Removal Using Atomic Hydrogen". Journal of Photopolymer Science and Technology 22, n.º 3 (2009): 325–28. http://dx.doi.org/10.2494/photopolymer.22.325.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ramjaun, T. I., S. W. Ooi, R. Morana y H. K. D. H. Bhadeshia. "Designing steel to resist hydrogen embrittlement: Part 1 – trapping capacity". Materials Science and Technology 34, n.º 14 (13 de julio de 2018): 1737–46. http://dx.doi.org/10.1080/02670836.2018.1475919.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ooi, S. W., T. I. Ramjaun, C. Hulme-Smith, R. Morana, M. Drakopoulos y H. K. D. H. Bhadeshia. "Designing steel to resist hydrogen embrittlement Part 2 – precipitate characterisation". Materials Science and Technology 34, n.º 14 (13 de julio de 2018): 1747–58. http://dx.doi.org/10.1080/02670836.2018.1496536.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Komori, Takuya, Hui Zhang, Takashi Akahane, Zulfakri bin Mohamad, You Yin y Sumio Hosaka. "Effect of Salty Development on Forming HSQ Resist Nanodot Arrays with a Pitch of 15×15 nm2 by 30-keV Electron Beam Lithography". Key Engineering Materials 534 (enero de 2013): 113–17. http://dx.doi.org/10.4028/www.scientific.net/kem.534.113.

Texto completo
Resumen
We investigated the effect of ultrahigh-resolution salty (NaCl contained) development of hydrogen silsesquioxane (HSQ) resist on forming fine dot arrays with a pitch of 15×15 nm2 by 30-keV electron beam lithography for patterned media. The optimized concentration of resist developers was determined to fabricate most packed pattern. We found that increasing the concentration of NaCl into tetramethyl ammonium hydroxide (TMAH) could greatly improve the resist contrast (γ-value) of HSQ. And by using 2.3 wt% TMAH/4 wt% NaCl developer, we demonstrated 15×15 nm2 pitched (3 Tbit/in.2) HSQ resist dot arrays with a dot size of < 10 nm.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Whitfield, Dennis M., Stephen P. Douglas, Ting-Hua Tang, Imre G. Csizmadia, Henrianna Y. S. Pang, Frederick L. Moolten y Jiri J. Krepinsky. "Differential reactivity of carbohydrate hydroxyls in glycosylations. II. The likely role of intramolecular hydrogen bonding on glycosylation reactions. Galactosylation of nucleoside 5′-hydroxyls for the syntheses of novel potential anticancer agents". Canadian Journal of Chemistry 72, n.º 11 (1 de noviembre de 1994): 2225–38. http://dx.doi.org/10.1139/v94-284.

Texto completo
Resumen
Contrary to expectations, many primary hydroxy groups are completely unreactive in glycosylation reactions, or give the desired glycosides in very low yields accompanied by products of many side reactions. Hydrogens of such primary hydroxyls are shown to be intramolecularly hydrogen bonded. Intermediates formed by nucleophilic attack by these hydroxyls on activated glycosylating agents may resist hydrogen abstraction. This resistance to proton loss is postulated to be the origin of the observed unreactivity. It is shown that successful glycosylations take place under acidic conditions under which such hydrogen bonds cease to exist. Accordingly, direct galactosylations of the normally unreactive 5′-hydroxyls of nucleosides were accomplished for the first time with a galactose trichloroacetimidate donor in chloroform under silver triflate promotion. It is noted that such galactosylated anticancer nucleosides may have improved biological specificity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Nagai, Tatsuo, Haruyoshi Yamakawa, Minoru Uchida, Toru Otsu, Norihito Ikemiya y Hiroshi Morita. "Study on Resist Removal Using Electrolyzed Sulfuric Acid Solution in Comparison with SPM". Solid State Phenomena 187 (abril de 2012): 109–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.187.109.

Texto completo
Resumen
It is known that resist removal capability of SPM gradually deteriorates during the stripping process. The deterioration is theoretically explained to be the decrease in the concentration of sulfuric acid. On the contrary, in the case of electrolyzed sulfuric acid method, both concentrations of sulfuric acid and of peroxodisulfuric acid produced by electrolysis are kept constant, so that the resist removal capability is maintained for a long term even without addition of hydrogen peroxide. It is proved that resist patterned on φ300mm wafers and implanted at 1E14 atoms/cm2 can be removed using electrolyzed sulfuric acid solution without ashing process.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Namatsu, H., T. Yamaguchi, M. Nagase, K. Yamazaki y K. Kurihara. "Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations". Microelectronic Engineering 41-42 (marzo de 1998): 331–34. http://dx.doi.org/10.1016/s0167-9317(98)00076-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Pascher, Nikola, Szymon Hennel, Susanne Mueller y Andreas Fuhrer. "Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography". New Journal of Physics 18, n.º 8 (28 de julio de 2016): 083001. http://dx.doi.org/10.1088/1367-2630/18/8/083001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Jin, Niu, Sookyung Choi, Liang Wang, Guang Chen, DongHyun Kim, Vipan Kumar y Ilesanmi Adesida. "Nanometer-scale gaps in hydrogen silsesquioxane resist for T-gate fabrication". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, n.º 6 (2007): 2081. http://dx.doi.org/10.1116/1.2798734.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Mitsui, Toshiyuki, Eric Hill y Eric Ganz. "Nanolithography by selective chemical vapor deposition with an atomic hydrogen resist". Journal of Applied Physics 85, n.º 1 (enero de 1999): 522–24. http://dx.doi.org/10.1063/1.369483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Saleem, Muhammad Rizwan. "Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers". Journal of Micro/Nanolithography, MEMS, and MOEMS 11, n.º 1 (2 de marzo de 2012): 013007. http://dx.doi.org/10.1117/1.jmm.11.1.013007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Dinh, Cong Que, Akihiro Oshima y Seiichi Tagawa. "Depth Dependence of Time Delay Effect on Hydrogen Silsesquioxane (HSQ) Resist Layers". Journal of Photopolymer Science and Technology 25, n.º 1 (2012): 121–24. http://dx.doi.org/10.2494/photopolymer.25.121.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Georgiev, Y. M., W. Henschel, A. Fuchs y H. Kurz. "Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist". Vacuum 77, n.º 2 (enero de 2005): 117–23. http://dx.doi.org/10.1016/j.vacuum.2004.07.080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Matsubara, Yasushi, Jun Taniguchi y Iwao Miyamoto. "Fabrication of Three-Dimensional Hydrogen Silsesquioxane Resist Structure using Electron Beam Lithography". Japanese Journal of Applied Physics 45, n.º 6B (20 de junio de 2006): 5538–41. http://dx.doi.org/10.1143/jjap.45.5538.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Yang, Fan, David K. Taggart y Reginald M. Penner. "Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture". Nano Letters 9, n.º 5 (13 de mayo de 2009): 2177–82. http://dx.doi.org/10.1021/nl9008474.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Vila-Comamala, Joan, Sergey Gorelick, Vitaliy A. Guzenko y Christian David. "3D Nanostructuring of hydrogen silsesquioxane resist by 100 keV electron beam lithography". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, n.º 6 (noviembre de 2011): 06F301. http://dx.doi.org/10.1116/1.3629811.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Masu, Kazuya. "Atomic hydrogen resist process with electron beam lithography for selective Al patterning". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, n.º 6 (noviembre de 1994): 3270. http://dx.doi.org/10.1116/1.587610.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Kato, T., J. Kamijo, T. Nakamura, C. Ohata, S. Katsumoto y J. Haruyama. "Spin phase protection in interference of electron spin waves in lightly hydrogenated graphene". RSC Advances 6, n.º 72 (2016): 67586–91. http://dx.doi.org/10.1039/c6ra11648e.

Texto completo
Resumen
Here, we have realized the extremely light hydrogenation of a graphene surface on SiO2 by precisely controlling the amount of electron beam (EB) irradiation to a specific EB resist including hydrogen atoms, treated on graphene.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Yamasaki, S. y H. K. D. H. Bhadeshia. "M 4 C 3 precipitation in Fe–C–Mo–V steels and relationship to hydrogen trapping". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, n.º 2072 (8 de marzo de 2006): 2315–30. http://dx.doi.org/10.1098/rspa.2006.1688.

Texto completo
Resumen
Strong steels suffer from embrittlement due to dissolved hydrogen, a phenomenon which can be mitigated by trapping the hydrogen at carbide particles, where it is rendered benign. The precipitation and coarsening of plate-like M 4 C 3 carbides, during the tempering of quaternary Fe–C–Mo–V martensitic steels, has been characterized both experimentally and by developing appropriate kinetic theory. The trapping capacity is found to peak when the carbides are about 10 nm in length, indicating a role of coherency strains in trapping hydrogen atoms via elastic interactions. This suggests a method for developing alloys which are better able to resist the detrimental effects of hydrogen.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Yang, Joel K. W., Bryan Cord, Huigao Duan, Karl K. Berggren, Joseph Klingfus, Sung-Wook Nam, Ki-Bum Kim y Michael J. Rooks. "Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, n.º 6 (2009): 2622. http://dx.doi.org/10.1116/1.3253652.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sidorkin, Vadim, Emile van der Drift y Huub Salemink. "Influence of hydrogen silsesquioxane resist exposure temperature on ultrahigh resolution electron beam lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 26, n.º 6 (noviembre de 2008): 2049–53. http://dx.doi.org/10.1116/1.2987965.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

van Delft, Falco C. M. J. M., Jos P. Weterings, Anja K. van Langen-Suurling y Hans Romijn. "Hydrogen silsesquioxane/novolak bilayer resist for high aspect ratio nanoscale electron-beam lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, n.º 6 (2000): 3419. http://dx.doi.org/10.1116/1.1319682.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Junarsa, Ivan, Mark P. Stoykovich, Paul F. Nealey, Yuansheng Ma, Franco Cerrina y Harun H. Solak. "Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23, n.º 1 (2005): 138. http://dx.doi.org/10.1116/1.1849213.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Yoshimura, Toshiyuki, Akira Ishikawa, Hiroshi Okamoto, Hiroshi Miyazaki, Akemi Sawada, Takuma Tanimoto y Shinji Okazaki. "Direct delineation of fine metallic patterns through hydrogen reduction of inorganic resist HPA". Microelectronic Engineering 13, n.º 1-4 (marzo de 1991): 97–100. http://dx.doi.org/10.1016/0167-9317(91)90056-j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

van Kan, J. A., A. A. Bettiol y F. Watt. "Hydrogen silsesquioxane a next generation resist for proton beam writing at the 20nm level". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 260, n.º 1 (julio de 2007): 396–99. http://dx.doi.org/10.1016/j.nimb.2007.02.051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Jamieson, Andrew. "Low-voltage electron beam lithography resist processes: top surface imaging and hydrogen silisesquioxane bilayer". Journal of Micro/Nanolithography, MEMS, and MOEMS 3, n.º 3 (1 de julio de 2004): 442. http://dx.doi.org/10.1117/1.1758268.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Shen, Jiashi, Ferhat Aydinoglu, Mohammad Soltani y Bo Cui. "E-beam lithography using dry powder resist of hydrogen silsesquioxane having long shelf life". Journal of Vacuum Science & Technology B 37, n.º 2 (marzo de 2019): 021601. http://dx.doi.org/10.1116/1.5079657.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Westly, Daron A., Donald M. Tennant, Yukinori Aida, Hirofumi Ohki y Takashi Ohkubo. "Improved time dependent performance of hydrogen silsesquioxane resist using a spin on top coat". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, n.º 6 (noviembre de 2011): 06FJ02. http://dx.doi.org/10.1116/1.3660788.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Lee, Hyo-Sung, Jung-Sub Wi, Sung-Wook Nam, Hyun-Mi Kim y Ki-Bum Kim. "Two-step resist-development process of hydrogen silsesquioxane for high-density electron-beam nanopatterning". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, n.º 1 (2009): 188. http://dx.doi.org/10.1116/1.3049482.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yoshimura, Toshiyuki, Akira Ishikawa, Hiroshi Okamoto, Hiroshi Miyazaki, Akemi Sawada, Takuma Tanimoto y Shinji Okazaki. "Direct delineation of fine metallic patterns through hydrogen reduction of the inorganic resist HPA". Microelectronic Engineering 14, n.º 3-4 (septiembre de 1991): 149–58. http://dx.doi.org/10.1016/0167-9317(91)90001-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Yin, You, Taichi Itagawa y Sumio Hosaka. "Electron Beam Lithography for Fabrication of Nanophase-Change Memory". Applied Mechanics and Materials 481 (diciembre de 2013): 30–35. http://dx.doi.org/10.4028/www.scientific.net/amm.481.30.

Texto completo
Resumen
In this work, we report two methods to fabricate the nanophase-change memory: (1) electron beam lithography (EBL) using the positive resist ZEP-520A followed by phase change material deposition and lift-off processes, (2) EBL using the negative resist hydrogen silsesquioxane (HSQ) followed by reactive ion etching (RIE) after phase change material deposition. For the former method, the optimized exposure dosage is around 40 μC/cm2 and the finest nanowire is about 80 nm in width. On the other hand, the latter method shows that the finest nanowire can be as small as about 15 nm in width after RIE process and the optimized exposure dosage is around 2.0 mC/cm2. In this case, collapse-preventing pattern becomes necessary for fabrication of such a fine nanowire.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Solard, Jeanne, Mahmoud Chakaroun y Azzedine Boudrioua. "Optimal design and fabrication of ITO photonic crystal using e-beam patterned hydrogen silsesquioxane resist". Journal of Vacuum Science & Technology B 38, n.º 2 (marzo de 2020): 022802. http://dx.doi.org/10.1116/1.5142533.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Mitsui, Toshiyuki, Rob Curtis y Eric Ganz. "Selective nanoscale growth of titanium on the Si(001) surface using an atomic hydrogen resist". Journal of Applied Physics 86, n.º 3 (agosto de 1999): 1676–79. http://dx.doi.org/10.1063/1.370946.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Choi, Sookyung, Minjun Yan, Ilesanmi Adesida, Keng H. Hsu y Nicholas X. Fang. "Ultradense gold nanostructures fabricated using hydrogen silsesquioxane resist and applications for surface-enhanced Raman spectroscopy". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, n.º 6 (2009): 2640. http://dx.doi.org/10.1116/1.3253610.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Küpper, Daniel, David Küpper, Thorsten Wahlbrink, Wolfgang Henschel, Jens Bolten, Max C. Lemme, Yordan M. Georgiev y Heinrich Kurz. "Impact of supercritical CO[sub 2] drying on roughness of hydrogen silsesquioxane e-beam resist". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, n.º 2 (2006): 570. http://dx.doi.org/10.1116/1.2167990.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Clark, Nathaniel, Amy Vanderslice, Robert Grove y Robert R. Krchnavek. "Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, n.º 6 (2006): 3073. http://dx.doi.org/10.1116/1.2366697.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Loong, W. A. y M. S. Yen. "Enhanced oxygen plasma stripping of P+-implanted negative resist by hydrogen plasma pretreatment: temperature effects". Electronics Letters 27, n.º 12 (1991): 1079. http://dx.doi.org/10.1049/el:19910670.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Wang, Fei, Jinsheng Liang, Haifeng Liu, Xinhui Duan, Qingguo Tang y Huimin Liu. "Preparation and Performance of Inorganic Heat Insulation Panel Based on Sepiolite Nanofibers". Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/876967.

Texto completo
Resumen
High efficiency and low cost thermal insulation energy saving panel materials containing sepiolite nanofibers were developed by means of the synergistic action of inorganic adhesive, curing agent, and hydrogen peroxide. The water soluble sodium silicate was used as inorganic adhesive, and the sodium fluorosilicate was chosen as curing agent. Moreover, appropriate amount of hydrogen peroxide was added in order to decrease the bulk density and improve the heat insulation performance of panel materials. The results showed that the synergistic action of inorganic adhesive, curing agent, and hydrogen peroxide could make thermal insulation energy saving panel materials have low bulk density and high mechanical performance, and the optimal process was as follows: 120°C of drying temperature, 1.6% of sodium silicate as inorganic adhesive, 12% of sodium fluorosilicate as curing agent in sodium silicate, and 2.5% of hydrogen peroxide. The thermal insulation energy saving panel materials as prepared could arrest heat transmission and resist external force effectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Tu, Bo, Yantao Bao, Ming Tang, Qian Zhu, Xiaopeng Lu, Hui Wang, Tianyun Hou, Ying Zhao, Ping Zhang y Wei-Guo Zhu. "TIP60 recruits SUV39H1 to chromatin to maintain heterochromatin genome stability and resist hydrogen peroxide-induced cytotoxicity". Genome Instability & Disease 1, n.º 6 (noviembre de 2020): 339–55. http://dx.doi.org/10.1007/s42764-020-00025-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Yan, M., J. Lee, B. Ofuonye, S. Choi, J. H. Jang y I. Adesida. "Effects of salty-developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense pattern transfer". Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, n.º 6 (noviembre de 2010): C6S23—C6S27. http://dx.doi.org/10.1116/1.3504497.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Gnan, M., S. Thoms, D. S. Macintyre, R. M. De La Rue y M. Sorel. "Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist". Electronics Letters 44, n.º 2 (2008): 115. http://dx.doi.org/10.1049/el:20082985.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Choi, Sookyung, Niu Jin, Vipan Kumar, Ilesanmi Adesida y Mark Shannon. "Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, n.º 6 (2007): 2085. http://dx.doi.org/10.1116/1.2794315.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Crane, E., A. Kölker, T. Z. Stock, N. Stavrias, K. Saeedi, M. A. W. van Loon, B. N. Murdin y N. J. Curson. "Hydrogen resist lithography and electron beam lithography for fabricating silicon targets for studying donor orbital states". Journal of Physics: Conference Series 1079 (agosto de 2018): 012010. http://dx.doi.org/10.1088/1742-6596/1079/1/012010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Henschel, W., Y. M. Georgiev y H. Kurz. "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, n.º 5 (2003): 2018. http://dx.doi.org/10.1116/1.1603284.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía