Literatura académica sobre el tema "Hydrogel thin films"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hydrogel thin films".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hydrogel thin films"
Tamirisa, Prabhakar A., Jere Koskinen y Dennis W. Hess. "Plasma polymerized hydrogel thin films". Thin Solid Films 515, n.º 4 (diciembre de 2006): 2618–24. http://dx.doi.org/10.1016/j.tsf.2006.03.021.
Texto completoTokarev, Ihor y Sergiy Minko. "Stimuli-responsive hydrogel thin films". Soft Matter 5, n.º 3 (2009): 511–24. http://dx.doi.org/10.1039/b813827c.
Texto completoMateescu, Anca, Yi Wang, Jakub Dostalek y Ulrich Jonas. "Thin Hydrogel Films for Optical Biosensor Applications". Membranes 2, n.º 1 (8 de febrero de 2012): 40–69. http://dx.doi.org/10.3390/membranes2010040.
Texto completoSuchaneck, Gunnar, Margarita Guenther, Joerg Sorber, Gerald Gerlach, Karl-Friedrich Arndt, Alexander Deyneka y Lubomir Jastrabik. "Plasma surface modification of hydrogel thin films". Surface and Coatings Technology 174-175 (septiembre de 2003): 816–20. http://dx.doi.org/10.1016/s0257-8972(03)00584-x.
Texto completoTsuji, Sakiko y Haruma Kawaguchi. "Colored Thin Films Prepared from Hydrogel Microspheres". Langmuir 21, n.º 18 (agosto de 2005): 8439–42. http://dx.doi.org/10.1021/la050271t.
Texto completoSouth, Antoinette B y L. Andrew Lyon. "Autonomic Self-Healing of Hydrogel Thin Films". Angewandte Chemie International Edition 49, n.º 4 (22 de diciembre de 2009): 767–71. http://dx.doi.org/10.1002/anie.200906040.
Texto completoSouth, Antoinette B y L. Andrew Lyon. "Autonomic Self-Healing of Hydrogel Thin Films". Angewandte Chemie 122, n.º 4 (22 de diciembre de 2009): 779–83. http://dx.doi.org/10.1002/ange.200906040.
Texto completoLee, Jeong Hyun, Aline T. Santoso, Emily S. Park, Kerryn Matthews, Simon P. Duffy y Hongshen Ma. "Lossless immunocytochemistry using photo-polymerized hydrogel thin-films". Analyst 145, n.º 8 (2020): 2897–903. http://dx.doi.org/10.1039/c9an02503k.
Texto completoUnger, Katrin, Marlene Anzengruber y Anna Maria Coclite. "Measurements of Temperature and Humidity Responsive Swelling of Thin Hydrogel Films by Interferometry in an Environmental Chamber". Polymers 14, n.º 19 (23 de septiembre de 2022): 3987. http://dx.doi.org/10.3390/polym14193987.
Texto completoDe Giglio, E., D. Cafagna, MM Giangregorio, M. Domingos, M. Mattioli-Belmonte y S. Cometa. "PHEMA-based thin hydrogel films for biomedical applications". Journal of Bioactive and Compatible Polymers 26, n.º 4 (17 de junio de 2011): 420–34. http://dx.doi.org/10.1177/0883911511410460.
Texto completoTesis sobre el tema "Hydrogel thin films"
Tamirisa, Prabhakar A. "Plasma polymerized hydrogel thin films for applications in sensors and actuators". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19827.
Texto completoCommittee Chair: Hess, Dennis W.; Committee Member: Henderson, Cliff L.; Committee Member: Hunt, William D.; Committee Member: Meredith, J. Carson; Committee Member: Prausnitz, Mark R.
Pareek, Pradeep. "Photo-crosslinked Surface Attached Thin Hydrogel Layers". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2005. http://nbn-resolving.de/urn:nbn:de:swb:14-1115623310082-44480.
Texto completoMartwong, Ekkachai. "Design of surface-attached hydrogel thin films with LCST/UCST temperature-responsive properties". Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS120/document.
Texto completoTemperature-responsive surface-attached hydrogel thin films with various LCST/UCST (Lower/Upper Critical Solution Temperature) were designed for specific applications. The chemical polymer networks covalently attached on plane solid substrates were synthesized by a versatile and straightforward approach using thiol-ene click chemistry. It consists in coating ene-reactive polymers and dithiol crosslinkers on thiol-modified substrates, the thiol-ene click reaction allowing simultaneous cross-linking between chains and grafting on the surface. The CLAG (Cross-Linking And Grafting) strategy provides chemically stable and reproducible hydrogel films with a wide range of thickness and with the desired temperature-responsive properties. Ene-functionalized hydrophilic polymers can be synthesized using free radical copolymerization of the desired monomer with allyl methacrylate in organic solvent or co-solvent with water. Another way is the synthesis in water in two steps: the desired monomer is copolymerized with acrylic acid and then the copolymer is post-modified by amidification. Three polymer families were investigated: poly(PEGMA), poly(acrylamide) derivatives and poly(zwitterions). The transition temperature of the hydrogel films is determined by measuring the thickness in aqueous solutions at different temperatures with ellipsometry. Poly(PEGMA) hydrogel films show LCST properties with the transition temperature increasing with the number of PEG units. The LCST ranges from 15 °C to 60 °C with two to five PEG units in the pendant chains. The LCST can also be adjusted using mixed copolymers hydrogel. Poly(acrylamide) derivatives hydrogel films have both LCST and UCST properties. Poly(sulfobetaine) hydrogel films show very interesting UCST behavior in addition to be anti-fouling, which is very promising for biology applications
Martwong, Ekkachai. "Design of surface-attached hydrogel thin films with LCST/UCST temperature-responsive properties". Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS120.pdf.
Texto completoTemperature-responsive surface-attached hydrogel thin films with various LCST/UCST (Lower/Upper Critical Solution Temperature) were designed for specific applications. The chemical polymer networks covalently attached on plane solid substrates were synthesized by a versatile and straightforward approach using thiol-ene click chemistry. It consists in coating ene-reactive polymers and dithiol crosslinkers on thiol-modified substrates, the thiol-ene click reaction allowing simultaneous cross-linking between chains and grafting on the surface. The CLAG (Cross-Linking And Grafting) strategy provides chemically stable and reproducible hydrogel films with a wide range of thickness and with the desired temperature-responsive properties. Ene-functionalized hydrophilic polymers can be synthesized using free radical copolymerization of the desired monomer with allyl methacrylate in organic solvent or co-solvent with water. Another way is the synthesis in water in two steps: the desired monomer is copolymerized with acrylic acid and then the copolymer is post-modified by amidification. Three polymer families were investigated: poly(PEGMA), poly(acrylamide) derivatives and poly(zwitterions). The transition temperature of the hydrogel films is determined by measuring the thickness in aqueous solutions at different temperatures with ellipsometry. Poly(PEGMA) hydrogel films show LCST properties with the transition temperature increasing with the number of PEG units. The LCST ranges from 15 °C to 60 °C with two to five PEG units in the pendant chains. The LCST can also be adjusted using mixed copolymers hydrogel. Poly(acrylamide) derivatives hydrogel films have both LCST and UCST properties. Poly(sulfobetaine) hydrogel films show very interesting UCST behavior in addition to be anti-fouling, which is very promising for biology applications
Pillai, Karthikeyan Chyan Oliver Ming-Ren. "FTIR-ATR characterization of hydrogel, polymer films, protein immobilization and benzotriazole adsorption on copper surface". [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-5132.
Texto completoXu, Zuxiang. "Underwater Adhesion between Biopolymer Model Surfaces and Hydrogels". Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS020.
Texto completoWhile the adhesion between synthetic materials has been rather well-studied experimentally and theoretically, there is still a lack of knowledge on bioadhesion, which could be tackled with biopolymer systems which could mimic biosurfaces, biotissues and bioadhesives. However, this idea is limited by the difficulty in designing a model structure and controlling the physical chemistry properties of biopolymer-made materials. Bioadhesion mechanisms can be tackled by studying the underwater adhesion between hydrogel adhesives and solid substrates modified by hydrogel thin films. This allows to separate interfacial contribution with molecular specific interactions and bulk contribution with viscoelastic properties to adhesion. First, a model system based on gelatins has been designed and underwater adhesion promoted by electrostatic interactions was investigated. On one side, stable surface-attached gelatin films with finely adjustable thickness and swelling were achieved using Cross-Linking and Grafting (CLAG) strategy. On the other side, dual-crosslinked gelatin hydrogel adhesives were synthesized by adding chemical crosslinks to physical gelatin networks. The microscopic structure of both physical and chemical crosslinks was well-controlled, with the determination of the chain length between crosslinks from shear modulus and phantom network model. Underwater adhesion measured by probe tack tests showed that dual-crosslinked gelatin hydrogels have the same adhesive properties at all temperatures even if their strength decreases with heating. We were also able to separate the effects of physical and chemical networks on adhesion. Second, the underwater adhesion between double-networks containing carrageenan and solid substrates modified by micro-patterned hydrogels was investigated. It was shown that the smaller the micro-patterns the higher the adhesion energy. This work has provided an insight of the physico-chemical and physical parameters that control underwater adhesion of biopolymers systems such as the bulk viscoelastic properties, the charge and the topography of the surface. It would help for better understanding bioadhesion and designing underwater adhesives
Serpe, Michael Joseph. "Self-Assembly of Poly(N-isopropylacrylamide) Microgel Thin Films". Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4806.
Texto completoAugustine, Anusree. "Swelling induced debonding of thin hydrogel films grafted on silicon substrate : the role of interface physical-chemistry". Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLS040.
Texto completoHydrogel coatings are transparent and hydrophilic polymer networks that absorb a lot of water and can be suitable candidates for anti-mist coatings. However, swelling-induced stresses within the film can result in detrimental debonding of hydrogel and may fail. In this study, these debonding processes are investigated in the relation to the grafting density at the film/substrate interface, so as to control and predict the failure of the coatings during swelling or under contact stresses. For that purpose, we have developed a methodology consisting in monitoring the initiation and the propagation of swelling-induced delamination from well-controlled preexisting interface defects.Surface-attached poly(dimethylacrylamide) (PDMA) hydrogel thin films are prepared on silicon wafers from the simultaneous Cross-Linking And Grafting (CLAG) of functionalized polymer chains by thiol-ene click chemistry. This strategy allows to tune the film thickness (0.1-2 µm) while ensuring a homogeneous crosslinking density. In order to vary the strength of the film/substrate interface, the silicon wafer is grafted by mixing reactive mercaptosilane and unreactive propylsilane in various proportions prior to the formation of the hydrogel film. We characterize the mercaptosilane surface fraction thus obtained by XPS and TOF-SIMS analyses. Well-controlled line defects (width between 2 and 100 µm) are also created to nucleate delamination of the hydrogel from the substrate.Swelling-induced debonding of the film is achieved under a constant vapor flow ensuring water saturation. Optical observations show the progressive debonding of the film from the pre-existing line defects under the action of localized swelling stresses. We obtain a delamination pattern of typical so-called telephone cord instability. We measure the debonding propagation velocity where the hydrogel is grafted to the substrate. The debonding rate is found to decrease over two orders of magnitude when the amount of mercaptosilane in the reactive silane mixture is increased from 10% to 100% while increasing the covalent bonds between hydrogel and substrate. A threshold thickness for debonding is also observed. This threshold thickness increases with the amount of mercaptosilane used to graft the substrate. We derived quantitative values of the interface fracture energy from the measured thickness threshold with a simple fracture mechanics model
Pillai, Karthikeyan. "FTIR-ATR Characterization of Hydrogel, Polymer Films, Protein Immobilization and Benzotriazole Adsorption on Copper Surface". Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc5132/.
Texto completoNogueira, Grinia Michelle. "Hidrogeis e filmes de fibroina de seda para fabricação ou recobrimento de biomateriais". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267124.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-12T12:02:05Z (GMT). No. of bitstreams: 1 Nogueira_GriniaMichelle_D.pdf: 10640071 bytes, checksum: 8b97ea00f684c6df573ea7e1ab6cc530 (MD5) Previous issue date: 2009
Resumo: Hidrogéis e filmes de fibroína de seda foram preparados e caracterizados com o objetivo de avaliar sua potencial aplicação no campo de biomateriais. Hidrogéis foram obtidos durante a etapa de diálise da solução de fibroína de seda e suas propriedades físicas, químicas, citotoxicidade e potencial de calcificação in vitro foram determinados. Esses materiais apresentaram estrutura tridimensional porosa com resistência mecânica à compressão relativamente alta e grande potencial de calcificar in vitro, sendo possíveis candidatos à aplicação na área de regeneração óssea. Filmes de fibroína de seda com quitosana foram preparados utilizando-se a técnica "Layer-by-Layer". Com esta técnica, foi possível depositar filmes anisotrópicos, com fibras alinhadas na superfície de substratos de silício. Como os biopolímeros em estudo são conhecidamente biocompatíveis, o alinhamento de fibras na superfície do substrato poderia ser explorado como um meio de guiar a adesão e proliferação celular ou ainda agregar resistência mecânica a outros filmes poliméricos. Filmes de fibroína de seda foram também empregados para recobrir pericárdio bovino utilizado na fabricação de válvulas cardíacas. Amostras recobertas com fibroína de seda foram avaliadas quanto à sua propensão à calcificação in vitro e os filmes foram testados quanto a sua citotoxicidade e potencial de adesão e crescimento de células endoteliais. Os resultados indicaram que filmes de fibroína de seda não apresentam citotoxicidade, são compatíveis com células endoteliais e não induzem a calcificação do pericárdio bovino recoberto durante os testes in vitro. Assim, o recobrimento com fibroína de seda pode ser uma alternativa de tratamento do pericárdio bovino para funcionalização da sua superfície. Dos resultados apresentados, concluiu-se que tanto hidrogéis como filmes derivados de fibroína de seda podem ser aplicados no campo de biomateriais, sejam como matrizes para reconstituição óssea, ou filmes para recobrimento e funcionalização da superfície de materiais.
Abstract: Silk fibroin hydrogels and films were prepared and characterized in order to investigate their potential application in the biomaterials field. The hydrogels were obtained during the dialysis step and their physical and chemical characteristics, cell toxicity and compatibility and potential to calcify in vitro were investigated. Those materials presented a porous tridimensional structure, mechanical strength and ability to deposit calcium phosphate crystals during in vitro calcification tests; therefore, silk fibroin hydrogels can probably be used in the bone regeneration field. Silk fibroin films were obtained by using the Layer-by-Layer technique. Bidirectional alignment of silk fibroin fibers was designed by adjusting the substrate position during the dipping process. A potential application to films with alignment of fibers is to guide cell adhesion and proliferation, since the biopolymers used to build the films are known as biocompatible materials. Silk fibroin films were also used to coat bovine pericardium used to fabricate cardiac valves. The coated samples were characterized by in vitro calcification tests and biocompatibility of silk fibroin films was evaluated by citotoxicity tests and their ability to adhere and grow of endothelial cells. The results showed that silk fibroin films are biocompatible and do not induce calcification during in vitro calcification tests, being suitable to coatand functionalize bovine pericardium surface. From the presented results, it can be concluded that silk fibroin hydrogels and films are suitable materials to be explored in the biomaterials field, for bone regeneration or biomaterials surface coating.
Doutorado
Engenharia de Processos
Doutor em Engenharia Química
Libros sobre el tema "Hydrogel thin films"
Rao, Myneni Ganapati y Hjörvarsson Björgvin, eds. Hydrogen in matter: A collection from the papers presented at the Second International Symposium on Hydrogen in Matter (ISOHIM), Uppsala, Sweden, 13-17 June 2005. Melville, N.Y: American Institute of Physics, 2006.
Buscar texto completoDuenow, Joel N. ZnO:Al doping level and hydrogen growth ambient effects on CIGS solar cell performance: Preprint. Golden, Colo: National Renewable Energy Laboratory, 2008.
Buscar texto completoXin, Gongbiao. Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49404-2.
Texto completoCanada, Atomic Energy of. Laser plasma generation of hydrogen-free diamond-like carbon thin films on ZR-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO 2 laser. Chalk River, Ont: Chalk River Nuclear Laboratories, 1995.
Buscar texto completoA, Ebrahim N., Atomic Energy of Canada Limited. y Chalk River Laboratories. Accelerator Physics Branch., eds. Laser plasma generation of hydrogen-free diamond-like carbon thin films on Zr-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO 2 laser. Chalk River, Ont: Accelerator Physics Branch, Chalk River Laboratories, 1995.
Buscar texto completoBientinesi, M. Preparation of thin film Pd membranes for H2 separation from synthesis gas and detailed design of a permeability testing unit. Hauppauge, N.Y: Nova Science Publishers, 2009.
Buscar texto completoXin, Gongbiao. Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films. Springer, 2018.
Buscar texto completoXin, Gongbiao. Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films. Springer, 2016.
Buscar texto completo(Editor), Ganapati Rao Myneni y Björgvin Hjörvarsson (Editor), eds. Hydrogen in Matter: A Collection from the Papers Presented at the 2nd International Symposium on Hydrogen in Matter; ISOHIM (AIP Conference Proceedings / Materials Physics and Applications). American Institute of Physics, 2006.
Buscar texto completoMiklitsch, Robert. Pickup on South Street. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040689.003.0004.
Texto completoCapítulos de libros sobre el tema "Hydrogel thin films"
Ionov, Leonid. "Actuating Hydrogel Thin Films". En Responsive Polymer Surfaces, 137–57. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527690534.ch6.
Texto completoToomey, Ryan, Ajay Vidyasagar y Ophir Ortiz. "Swelling Behavior of Thin Hydrogel Coatings". En Functional Polymer Films, 649–67. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527638482.ch19.
Texto completoLaschewsky, André, Peter Müller-Buschbaum y Christine M. Papadakis. "Thermo-responsive Amphiphilic Di- and Triblock Copolymers Based on Poly(N-isopropylacrylamide) and Poly(methoxy diethylene glycol acrylate): Aggregation and Hydrogel Formation in Bulk Solution and in Thin Films". En Intelligent Hydrogels, 15–34. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01683-2_2.
Texto completoGuglya, Aleksey y Elena Lyubchenko. "Thin Film Hydrogen Storages". En Handbook of Ecomaterials, 1–27. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_144-1.
Texto completoGuglya, Aleksey y Elena Lyubchenko. "Thin Film Hydrogen Storages". En Handbook of Ecomaterials, 913–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_144.
Texto completoJain, I. P. y Y. K. Vijay. "Thin Film Hydrogen Storage System". En Progress in Hydrogen Energy, 111–22. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3809-0_8.
Texto completoKusoglu, Ahmet. "Ionomer Thin Films in PEM Fuel Cells". En Fuel Cells and Hydrogen Production, 417–38. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7789-5_1021.
Texto completoBeyer, Wolfhard y Florian Einsele. "Hydrogen Effusion Experiments". En Advanced Characterization Techniques for Thin Film Solar Cells, 449–75. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636280.ch17.
Texto completoBeyer, Wolfhard y Florian Einsele. "Hydrogen Effusion Experiments". En Advanced Characterization Techniques for Thin Film Solar Cells, 569–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527699025.ch20.
Texto completoObayi, Camillus Sunday y Paul Sunday Nnamchi. "Mixed Transition Metal Oxides for Photoelectrochemical Hydrogen Production". En Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 279–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_11.
Texto completoActas de conferencias sobre el tema "Hydrogel thin films"
Stevens, Andrew P., Bryon E. Wright y Vladimir Hlady. "Measuring tear protein mobility in thin hydrogel films with fluorescence correlation spectroscopy". En Biomedical Optics 2004, editado por Ammasi Periasamy y Peter T. C. So. SPIE, 2004. http://dx.doi.org/10.1117/12.529758.
Texto completoZhao, Weiwei, Tommaso Santaniello, Patrick Webb, Cristina Lenardi y Changqing Liu. "A new approach towards an optimum design and manufacture of microfluidic devices based on ex situ fabricated hydrogel based thin films' integration". En 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC). IEEE, 2012. http://dx.doi.org/10.1109/ectc.2012.6249114.
Texto completoCesnik, Stefan, Anna Maria Coclite, Alberto Perrotta, Alessandro Cian, Massimo Tormen y Alexander Bergmann. "Fast optical humidity sensor based on nanostructured hydrogels". En Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII, editado por Wounjhang Park, André-Jean Attias y Balaji Panchapakesan. SPIE, 2020. http://dx.doi.org/10.1117/12.2568475.
Texto completoKaur, Manmeet, S. Kailasa Ganapathi, Varsha Chaware, Vivek Rane, Niranjan Ramgir, Niyanta Datta, Vijaya Giramkar, Girish Phatak, D. K. Aswal y S. K. Gupta. "SnO2: CuO based hydrogen sulphide sensor on LTCC substrates". En INDIAN VACUUM SOCIETY SYMPOSIUM ON THIN FILMS: SCIENCE AND TECHNOLOGY. AIP, 2012. http://dx.doi.org/10.1063/1.4732450.
Texto completoPatel, N. "Thermal Stability of Hydrogenated Mg/Al Thin Films". En HYDROGEN IN MATTER: A Collection from the Papers Presented at the Second International Symposium on Hydrogen in Matter (ISOHIM). AIP, 2006. http://dx.doi.org/10.1063/1.2213057.
Texto completoAllen, Thomas H. "Nonconventional materials in optical thin films". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mj2.
Texto completoLayek, Animesh, Somnath Middya y Partha Pratim Ray. "Optimization of device quality silicon hydrogen alloy materials from plasma emission diagnostics and its application to solar cell". En INDIAN VACUUM SOCIETY SYMPOSIUM ON THIN FILMS: SCIENCE AND TECHNOLOGY. AIP, 2012. http://dx.doi.org/10.1063/1.4732384.
Texto completoCheu, Darrell, Thomas Adams y Shripad Revankar. "Hydrogen Loading System for Thin Films for Betavoltaics". En 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93910.
Texto completoXia, Yiben, Takashi Sekiguchi, Weimin Shi, Linjun Wang, Jianhua Ju y Takafumi Yao. "Defects eliminated by hydrogen and boron ion bombardment in polycrystalline diamond films". En 4th International Conference on Thin Film Physics and Applications, editado por Junhao Chu, Pulin Liu y Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408322.
Texto completoKarapatnitski, Igor A., Konstantin A. Mit', Daniya M. Mukhamedshina y Grigory G. Baikov. "Influence of hydrogen plasma processing on gas-sensitive tin dioxied thin film properties". En 4th International Conference on Thin Film Physics and Applications, editado por Junhao Chu, Pulin Liu y Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408464.
Texto completoInformes sobre el tema "Hydrogel thin films"
Pital, Aaron, Keri Campbell y Daniel Kelly. Hydrogen Diffusion Coefficient Measures on Thin Film Uranium Oxide. Office of Scientific and Technical Information (OSTI), octubre de 2023. http://dx.doi.org/10.2172/2202591.
Texto completoIlias, S., F. G. King, N. Su y U. I. Udo-Aka. Separation of hydrogen using thin film palladium-ceramic composite membrane. Office of Scientific and Technical Information (OSTI), noviembre de 1995. http://dx.doi.org/10.2172/128538.
Texto completoIlias, S., F. G. King, Ting-Fang Fan y S. Roy. Separation of Hydrogen Using an Electroless Deposited Thin-Film Palladium-Ceramic Composite Membrane. Office of Scientific and Technical Information (OSTI), diciembre de 1996. http://dx.doi.org/10.2172/419403.
Texto completoMi, Zetian, Yanfa Yan, Dunwei Wang, Thomas Hamann, Frecesca Toma, Todd Deutsch y Tadashi Ogitsu. HydroGEN Seedling: Monolithically Integrated Thin Film/Silicon Tandem Photoelectrodes for High-Efficiency and Stable Photoelectrochemical Water Splitting. Office of Scientific and Technical Information (OSTI), mayo de 2023. http://dx.doi.org/10.2172/1974610.
Texto completoHoagland, William, Julie Bannantine y Rodney Smith. Thin Film Hydrogen Sensor Development, Testing and Integration Into Low Cost Wireless Sensing Systems (SBIR Phase 1 Final Report). Office of Scientific and Technical Information (OSTI), abril de 2020. http://dx.doi.org/10.2172/1614795.
Texto completoPan, Yi. Formation of Superhexagonal Chromium Hydride by Exposure of Chromium Thin Film to High Temperature, High Pressure Hydrogen in a Ballistic Compressor. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.1242.
Texto completoParkins. L51806 Effects of Hydrogen on Low-pH Stress Corrosion Crack Growth. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), julio de 1998. http://dx.doi.org/10.55274/r0010142.
Texto completoRavillard, Pauline, J. Enrique Chueca, Mariana Weiss y Michelle Carvalho Metanias Hallack. Implications of the Energy Transition on Employment: Today’s Results, Tomorrow’s Needs. Inter-American Development Bank, noviembre de 2021. http://dx.doi.org/10.18235/0003765.
Texto completoWilmont, Martyn, Greg Van Boven y Tom Jack. GRI-96-0452_1 Stress Corrosion Cracking Under Field Simulated Conditions I. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), noviembre de 1997. http://dx.doi.org/10.55274/r0011963.
Texto completoLi, Francis G. N., Christopher Bataille y Adrien Vogt-Schilb. Net-Zero Industry: Options for Plastics, Textiles, Automobiles, and Fisheries in Colombia, Ecuador, and Peru. Inter-American Development Bank, septiembre de 2023. http://dx.doi.org/10.18235/0005167.
Texto completo