Literatura académica sobre el tema "Hydrodynamical limits"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hydrodynamical limits".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hydrodynamical limits"
Lopes Garcia, Nancy. "Hydrodynamical limits for epidemic models". Communications in Statistics. Stochastic Models 14, n.º 3 (enero de 1998): 497–508. http://dx.doi.org/10.1080/15326349808807485.
Texto completoKatsoulakis, Markos A. y Anders Szepessy. "Stochastic hydrodynamical limits of particle systems". Communications in Mathematical Sciences 4, n.º 3 (2006): 513–49. http://dx.doi.org/10.4310/cms.2006.v4.n3.a3.
Texto completoMiyoshi, Hironari y Masayoshi Tsutsumi. "Convergence of Hydrodynamical Limits for Generalized Carleman Models". Funkcialaj Ekvacioj 59, n.º 3 (2016): 351–82. http://dx.doi.org/10.1619/fesi.59.351.
Texto completoSowers, Richard B. "Hydrodynamical Limits and Geometric Measure Theory: Mean Curvature Limits from a Threshold Voter Model". Journal of Functional Analysis 169, n.º 2 (diciembre de 1999): 421–55. http://dx.doi.org/10.1006/jfan.1999.3477.
Texto completoGabetta, E., L. Pareschi y M. Ronconi. "Central schemes for hydrodynamical limits of discrete-velocity kinetic models". Transport Theory and Statistical Physics 29, n.º 3-5 (abril de 2000): 465–77. http://dx.doi.org/10.1080/00411450008205885.
Texto completoMontarnal, Philippe. "Study of hydrodynamical limits in a multicollision scale Boltzmann equation for semiconductors". Journal of Mathematical Physics 39, n.º 5 (mayo de 1998): 2781–99. http://dx.doi.org/10.1063/1.532420.
Texto completoJacobus, Cooper, Peter Harrington y Zarija Lukić. "Reconstructing Lyα Fields from Low-resolution Hydrodynamical Simulations with Deep Learning". Astrophysical Journal 958, n.º 1 (1 de noviembre de 2023): 21. http://dx.doi.org/10.3847/1538-4357/acfcb5.
Texto completoCHEVALIER, C., F. DEBBASCH y J. P. RIVET. "STOCHASTIC MODELS OF THERMODIFFUSION". Modern Physics Letters B 23, n.º 09 (10 de abril de 2009): 1147–55. http://dx.doi.org/10.1142/s0217984909019260.
Texto completoBaraffe, I., M. Viallet y R. Walder. "Towards a New Generation of Multi-Dimensional Stellar Models: Can Our Models Meet the Challenges?" Proceedings of the International Astronomical Union 7, S285 (septiembre de 2011): 138. http://dx.doi.org/10.1017/s1743921312000464.
Texto completoSanchis, E., G. Picogna, B. Ercolano, L. Testi y G. Rosotti. "Detectability of embedded protoplanets from hydrodynamical simulations". Monthly Notices of the Royal Astronomical Society 492, n.º 3 (11 de enero de 2020): 3440–58. http://dx.doi.org/10.1093/mnras/staa074.
Texto completoTesis sobre el tema "Hydrodynamical limits"
Briant, Marc. "On the Boltzmann equation, quantitative studies and hydrodynamical limits". Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246471.
Texto completoFeliachi, Ouassim. "From Particles to Fluids : A Large Deviation Theory Approach to Kinetic and Hydrodynamical Limits". Electronic Thesis or Diss., Orléans, 2023. http://www.theses.fr/2023ORLE1063.
Texto completoThe central problem of statistical physics is to understand how to describe a system with macroscopic equations, which are usually deterministic, starting from a microscopic description, which may be stochastic. This task requires taking at least two limits: a “large N ” limit and a “local equilibrium” limit. The former allows a system of N particles to be described by a phase-space distribution function, while the latter reflects the separation of time scales between the fast approach to local equilibrium and the slow evolution of hydrodynamic modes. When these two limits are taken, a deterministic macroscopic description is obtained. For both theoretical and modeling reasons (N is large but not infinite, the time-scale separation is not perfect), it is sometimes important to understand the fluctuations around this macroscopic description. Fluctuating hydrodynamics provides a framework for describing the evolution of macroscopic, coarse-grained fields while taking into account finite- particle-number induced fluctuations in the hydrodynamic limit. This thesis discusses the derivation of fluctuating hydrodynamics from the microscopic description of particle dynamics. The derivation of the fluctuating hydrodynamics is twofold. First, the “large N” limit must be refined to account for fluctuations beyond the average behavior of the system. This is done by using large deviation theory to establish kinetic large deviation principles that describe the probability of any evolution path for the empirical measure beyond the most probable path described by the kinetic equation. Then, the fluctuating hydrodynamics is derived by studying the hydrodynamical limit of the kinetic large deviation principle, or the associated fluctuating kinetic equation. This dissertation discusses this program and its application to several physical systems ranging from the dilute gas to active particles
Even, Nadine. "On Hydrodynamic Limits and Conservation Laws". Doctoral thesis, kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3837/.
Texto completoGivan, Daniel Rey. "Improved operational limits for offshore pipelay vessels". ScholarWorks@UNO, 2012. http://scholarworks.uno.edu/td/1439.
Texto completoJiménez, Oviedo Byron. "Processus d’exclusion avec des sauts longs en contact avec des réservoirs". Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4000/document.
Texto completoAndrade, Adriana Uquillas. "Processo de exclusão simples com taxas variáveis". Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-23082008-193758/.
Texto completoConsider a Poisson process with rate equal to 1 in IR. Consider the nearest neighbor simple exclusion process with random jump rates § where §x =\\lambda, \\lambda > 0 if there is a Poisson mark between (x, x + 1) and §x = 1 otherwise. We prove the hydrodynamic limit of this process. This result follows from the hydrodynamic limit in the case that the jump rates {§x : x inteiro} are replaced by an array {cx,N : x inteiro} having the same distribution for each N >=1.
Machrouki, Hicham. "Incompressibilité et conditions aux limites dans la méthode Smoothed particle hydrodynamics". Poitiers, 2012. http://theses.univ-poitiers.fr/25282/2012-Machrouki-Hicham-These.pdf.
Texto completoA numerical particle method for solving the Bavier-Stokes equations in velocity-pressure formulation for two dimensional incompressible flows is presented. The basis of the method is the Smoothed particle hydrodynamics (SPH) formulation for the moment transport. On advantage of this meshless method is an easy treatment of computational domains with complex boundaries. The pressure is computed by solving a poisson equation that ensures the flow incompressibility and the boundary conditions are imposed by using a boundary integral method (BIM). This last method, is known to be strongly CPU time consuming. To overcome this difficulty, the source term of the poisson equation was solved by introducing a cartesian grid and by using finite differences. The same treatment has been applied to the generalize Helmholtz equation for the velocity field as well. The different steps were validated by studying several academic cases including a driven cavity low, a dam break and an impulsively started flow around a circular cylinder. Aditionaly to this standard use for flow numerical modelling, the method was also applied for rebuilding the pressure and velocity fields from velocity fields experimentally measured by a PIV method. The method was then applied to the flow around a moving NACA profile
Fathi, Max. "Etude théorique et numérique de quelques modèles stochastiques en physique statistique". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066349/document.
Texto completoIn this thesis, we are mainly interested in three topics : functional inequalities and their probabilistic aspects, hydrodynamic limits for interacting continuous spin systems and discretizations of stochastic differential equations. This document, in addition to a general introduction (written in French), contains three parts. The first part deals with functional inequalities, especially logarithmic Sobolev inequalities, for canonical ensembles, and with hydrodynamic limits for continuous spin systems. We prove convergence to the hydrodynamic limit for several variants of the Ginzburg--Landau model endowed with Kawasaki dynamics, with quantitative bounds in the number of spins. We also study convergence of the microscopic entropy to its hydrodynamic counterpart. In the second part, we study links between gradient flows in spaces of probability measures and large deviations for sequences of laws of solutions to stochastic differential equations. We show that the large deviations principle is equivalent to the Gamma--Convergence of a sequence of functionals that appear in the gradient flow formulation of the flow of marginals of the laws of the diffusion processes. As an application of this principle, we obtain large deviations from the hydrodynamic limit for two variants of the Ginzburg-Landau model. The third part deals with the discretization of stochastic differential equations. We prove a transport-Entropy inequality for the law of the explicit Euler scheme. This inequality implies bounds on the confidence intervals for quantities of the form $\mathbb{E}[f(X_T)]$. We also study the discretization error for the evaluation of transport coefficients with the Metropolis-Adjusted Langevin algorithm (which is a combination of the explicit Euler scheme and the Metropolis algorithm)
Koukkous, Abdellatif. "Comportement hydrodynamique de différents processus de zéro range". Rouen, 1997. http://www.theses.fr/1997ROUES051.
Texto completoAguiar, Guilherme Ost de. "Limite hidrodinâmico para neurônios interagentes estruturados espacialmente". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-01062016-162917/.
Texto completoWe study the hydrodynamic limit of a stochastic system of neurons whose interactions are given by Kac Potentials that mimic chemical and electrical synapses and leak currents. The system consists of $\\ep^$ neurons embedded in $[0,1)^2$, each spiking randomly according to a point process with rate depending on both its membrane potential and position. When neuron $i$ spikes, its membrane potential is reset to $0$ while the membrane potential of $j$ is increased by a positive value $\\ep^2 a(i,j)$, if $i$ influences $j$. Furthermore, between consecutive spikes, the system follows a deterministic motion due both to electrical synapses and leak currents. The electrical synapses are involved in the synchronization of the membrane potentials of the neurons, while the leak currents inhibit the activity of all neurons, attracting simultaneously their membrane potentials to 0. We show that the empirical distribution of the membrane potentials converges, as $\\ep$ vanishes, to a probability density $ho_t(u,r)$ which is proved to obey a nonlinear PDE of Hyperbolic type.
Libros sobre el tema "Hydrodynamical limits"
De Masi, Anna y Errico Presutti. Mathematical Methods for Hydrodynamic Limits. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0086457.
Texto completoMasi, Anna De. Mathematical methods for hydrodynamic limits. Berlin: Springer-Verlag, 1991.
Buscar texto completoSaint-Raymond, Laure. Hydrodynamic Limits of the Boltzmann Equation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92847-8.
Texto completoTadahisa, Funaki y Woyczyński W. A. 1943-, eds. Nonlinear stochastic PDE's: Hydrodynamic limit and Burgers' turbulence. New York: Springer, 1996.
Buscar texto completoKipnis, Claude. Scaling limits of interacting particle systems. New York: Springer, 1999.
Buscar texto completoDenny, Mark W. Hydrodynamics, shell shape, behavior and survivorship in the owl limpet 'Lottia gigantea'. Cambridge: Cambridge University Press, 2000.
Buscar texto completoDeMasi, Anna y Errico Presutti. Mathematical Methods for Hydrodynamic Limits. Springer London, Limited, 2006.
Buscar texto completo(Editor), Shui Feng, Anna T. Lawniczak (Editor) y S. R. S. Varadhan (Editor), eds. Hydrodynamic Limits and Related Topics (Fields Institute Communications). American Mathematical Society, 2000.
Buscar texto completoWoyczynski, Wojbor y Tadahisa Funaki. Nonlinear Stochastic PDEs: Hydrodynamic Limit and Burgers' Turbulence. Springer London, Limited, 2012.
Buscar texto completoCapítulos de libros sobre el tema "Hydrodynamical limits"
Cercignani, Carlo, Reinhard Illner y Mario Pulvirenti. "Hydrodynamical Limits". En The Mathematical Theory of Dilute Gases, 312–35. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4419-8524-8_12.
Texto completoJensen, Leif y Horug-Tzer Yau. "Hydrodynamical scaling limits of simple exclusion models". En IAS/Park City Mathematics Series, 167–225. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/pcms/006/04.
Texto completoSpohn, Herbert. "The Hydrodynamic Limit". En Large Scale Dynamics of Interacting Particles, 33–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84371-6_4.
Texto completoEl’, Gennady A., Alexander V. Gurevich y Alexander L. Krylov. "Breaking Problem in Dispersive Hydrodynamics". En Singular Limits of Dispersive Waves, 89–104. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2474-8_7.
Texto completoIgochine, Valentin. "Magneto-Hydrodynamics and Operational Limits". En Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas, 9–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44222-7_2.
Texto completoDe Masi, Anna y Errico Presutti. "Hydrodynamic limits for independent particles". En Mathematical Methods for Hydrodynamic Limits, 7–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0086459.
Texto completoDe Masi, Anna y Errico Presutti. "Hydrodynamic limits in kinetic models". En Mathematical Methods for Hydrodynamic Limits, 112–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0086464.
Texto completoVaradhan, S. R. S. "Relative Entropy and Hydrodynamic Limits". En Stochastic Processes, 329–36. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4615-7909-0_37.
Texto completoDe Masi, Anna y Errico Presutti. "Introduction". En Mathematical Methods for Hydrodynamic Limits, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0086458.
Texto completoDe Masi, Anna y Errico Presutti. "Hydrodynamics of the zero range process". En Mathematical Methods for Hydrodynamic Limits, 33–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0086460.
Texto completoActas de conferencias sobre el tema "Hydrodynamical limits"
Ferreira, Bruno, Miguel Pinto, Anibal Matos y Nuno Cruz. "Hydrodynamic modeling and motion limits of AUV MARES". En IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON 2009). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5415198.
Texto completoBISI, M. y G. SPIGA. "HYDRODYNAMIC LIMIT FOR A GAS WITH CHEMICAL REACTIONS". En Proceedings of the 12th Conference on WASCOM 2003. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702937_0011.
Texto completoBabovsky, Hans. "DISCRETE VELOCITY MODELS: A STUDY OF THE HYDRODYNAMIC LIMIT". En VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2019.9530.
Texto completoAn, Qiang y Adam M. Steinberg. "Limits and Intermittency of Swirl Flame Lift-Off Copuled with Hydrodynamic Instability". En 2018 Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-4472.
Texto completoBabovsky, Hans. "Discrete velocity models: Bifurcations, hydrodynamic limits and application to an evaporation condensation problem". En 30TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS: RGD 30. Author(s), 2016. http://dx.doi.org/10.1063/1.4967581.
Texto completoTichy, John, Victor Marrero y Diana-Andra Borca-Tasciuc. "Limits to Lubrication Theory in Microsystems". En STLE/ASME 2008 International Joint Tribology Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ijtc2008-71068.
Texto completoDoctors, Lawrence J. "The Wave System of the Sydney Harbor RiverCat Ferry". En SNAME International Conference on Fast Sea Transportation. SNAME, 2021. http://dx.doi.org/10.5957/fast-2021-007.
Texto completoYang, Jianwei y Shu Wang. "The Non-Relativistic Limit of Radiation Hydrodynamics Equations Arising from Astrophysics". En 2009 Second International Conference on Intelligent Computation Technology and Automation. IEEE, 2009. http://dx.doi.org/10.1109/icicta.2009.464.
Texto completoMasmoudi, Nader. "Some recent developements on the Hydrodynamic limit of the Boltzmann equation". En Proceedings of the Third International Palestinian Conference. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778390_0014.
Texto completoChitrapu, A. S. Murthy, Theodore G. Mordfin y Henry M. Chance. "Efficient Time-Domain Simulation of Side-By-Side Moored Vessels Advancing in Waves". En ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29749.
Texto completoInformes sobre el tema "Hydrodynamical limits"
Tidriri, M. Coupling of Kinetic Equations and Their Hydrodynamic Limits. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2001. http://dx.doi.org/10.21236/ada408735.
Texto completoChiodi, Robert, Michael McKerns y Daniel Livescu. Machine Learning Optimal Flux-Limiters for Hydrodynamic Calculations. Office of Scientific and Technical Information (OSTI), septiembre de 2023. http://dx.doi.org/10.2172/2000891.
Texto completoChiodi, Robert, Michael McKerns y Daniel Livescu. Machine Learning Optimal Flux-Limiters for Hydrodynamic Calculations. Office of Scientific and Technical Information (OSTI), septiembre de 2023. http://dx.doi.org/10.2172/2005773.
Texto completoKlasky, Marc, Charles Bouman, Jennifer Disterhaupt, Michelle Espy, Jeffrey Fessler, Maliha Hossein, Elena Guardincerri et al. EREBUS Coupled Hydrodynamic Radiographic Dynamic Reconstruction & Limited View Reconstructions. Office of Scientific and Technical Information (OSTI), marzo de 2021. http://dx.doi.org/10.2172/1772390.
Texto completoMelby, Jeffrey, Thomas Massey, Abigail Stehno, Norberto Nadal-Caraballo, Shubhra Misra y Victor Gonzalez. Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 1 – background and approach. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/41820.
Texto completoStehno, Abigail, Jeffrey Melby, Shubhra Misra, Norberto Nadal-Caraballo y Victor Gonzalez. Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 2 – Port Arthur. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/41901.
Texto completoStehno, Abigail, Jeffrey Melby, Shubhra Misra, Norberto Nadal-Caraballo y Victor Gonzalez. Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 4 – Freeport. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/41903.
Texto completoStehno, Abigail, Jeffrey Melby, Shubhra Misra, Norberto Nadal-Caraballo y Victor Gonzalez. Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 3 – Orange County. Engineer Research and Development Center (U.S.), septiembre de 2021. http://dx.doi.org/10.21079/11681/41902.
Texto completoFall, Kelsey, David Perkey, Zachary Tyler y Timothy Welp. Field measurement and monitoring of hydrodynamic and suspended sediment within the Seven Mile Island Innovation Laboratory, New Jersey. Engineer Research and Development Center (U.S.), junio de 2021. http://dx.doi.org/10.21079/11681/40980.
Texto completoZhu, Minjie y Michael Scott. Two-Dimensional Debris-Fluid-Structure Interaction with the Particle Finite Element Method. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, abril de 2024. http://dx.doi.org/10.55461/gsfh8371.
Texto completo