Literatura académica sobre el tema "Hybrid solid electrolyte"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hybrid solid electrolyte".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Hybrid solid electrolyte"

1

Kanai, Yamato, Koji Hiraoka, Mutsuhiro Matsuyama y Shiro Seki. "Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes". Batteries 9, n.º 10 (26 de septiembre de 2023): 492. http://dx.doi.org/10.3390/batteries9100492.

Texto completo
Resumen
Safe, self-standing, all-solid-state batteries with improved solid electrolytes that have adequate mechanical strength, ionic conductivity, and electrochemical stability are strongly desired. Hybrid electrolytes comprising flexible polymers and highly conductive inorganic electrolytes must be compatible with soft thin films with high ionic conductivity. Herein, we propose a new type of solid electrolyte hybrid comprising a glass–ceramic inorganic electrolyte powder (Li1+x+yAlxTi2−xSiyP3−yO12; LICGC) in a poly(ethylene)oxide (PEO)-based polymer electrolyte that prevents decreases in ionic conductivity caused by grain boundary resistance. We investigated the cross-linking processes taking place in hybrid electrolytes. We also prepared chemically cross-linked PEO/LICGC and physically cross-linked poly(norbornene)/LICGC electrolytes, and evaluated them using thermal and electrochemical analyses, respectively. All of the obtained electrolyte systems were provided with homogenous, white, flexible, and self-standing thin films. The main ionic conductive phase changed from the polymer to the inorganic electrolyte at low temperatures (close to the glass transition temperature) as the LICGC concentration increased, and the Li+ ion transport number also improved. Cyclic voltammetry using [Li metal|Ni] cells revealed that Li was reversibly deposited/dissolved in the prepared hybrid electrolytes, which are expected to be used as new Li+-conductive solid electrolyte systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lv, Wenjing, Kaidong Zhan, Xuecheng Ren, Lu Chen y Fan Wu. "Comparing Charge Dynamics in Organo-Inorganic Halide Perovskite: Solid-State versus Solid-Liquid Junctions". Journal of Nanoelectronics and Optoelectronics 19, n.º 2 (1 de febrero de 2024): 121–28. http://dx.doi.org/10.1166/jno.2024.3556.

Texto completo
Resumen
In this study, we explore the dynamics of a perovskite-electrolyte photoelectrochemical cell, pivotal for advancing electrolyte-gated field effect transistors, water-splitting photoelectrochemical and photocatalytic cells, supercapacitors, and CO2 capture and reduction technologies. The instability of hybrid perovskite materials in aqueous electrolytes presents a significant challenge, yet recent breakthroughs have been achieved in stabilizing organo-inorganic halide perovskite films. This stabilization is facilitated by employing liquid electrolytes, specifically those formed by dissolving tetrabutylammoniumperchlorate in dichloromethane. A critical aspect of this research is the comparative analysis of charge and ion kinetics at the perovskite/liquid electrolyte interface versus the perovskite/solid charge transport layer interface. Employing Intensity Modulated Photocurrent Spectroscopy (IMPS), Open-Circuit Voltage Decay (OCVD), and Capacitance-Frequency (C-F) methods, the study scrutinizes charge dynamics in both perovskite/electrolyte and perovskite/solid interfaces. Furthermore, the investigation extends to contrasting the properties of solid–liquid and solid-state junctions, focusing on mobile ions, electric field impacts, and electron-hole transport. The research also examines variations in recombination resistance and ionic double layer charging in perovskite-based devices, aiming to elucidate the operational mechanisms and kinetic complexities at the hybrid perovskite/electrolyte interface.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Choi, Kyoung Hwan, Eunjeong Yi, Kyeong Joon Kim, Seunghwan Lee, Myung-Soo Park, Hansol Lee y Pilwon Heo. "(Invited) Pragmatic Approach and Challenges of All Solid State Batteries: Hybrid Solid Electrolyte for Technical Innovation". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 988. http://dx.doi.org/10.1149/ma2023-016988mtgabs.

Texto completo
Resumen
For the growth of electric vehicle market, lithium-ion batteries (LIBS) used in the EVs still requires safety and reliability. Unfortunately, large-scale application of the LIBs is being challenged due to the fact that the use of flammable liquid electrolytes has caused safety issues such as leakage and fire explosion. In this respect, all-solid-state batteries (ASSBs) have been intensively studied to ensure the safety and mileage that are superior to the current LIBs. In terms of solid electrolytes, oxide electrolytes not only shows high ionic conductivity (10-4 ~ 10-3 S/cm) but also high mechanical strength to suppress surface dendrite formation. In addition, the oxide electrolytes possess advantages such as non-flammability, high thermal stability, and excellent electrochemical stability (~ 6 V), enabling high temperature/high voltage operations of oxide-based ASSBs. However, most of oxide materials require a sintering process at high temperatures to form a planar solid electrolyte. And a lack of flexibility results in non-uniform electrolyte/electrode contact in the battery, which makes it difficult to apply the rigid oxide electrolyte directly. On the other hand, solid polymer electrolytes have also been actively investigated due to no leakage, good electrolyte/electrode contact, easy processing, flexibility, and good film formability. However, the solid polymer electrolytes have critical disadvantages such as low ionic conductivity at room temperature and low thermal/mechanical stability, which precludes commercialization of solid polymer-based ASSBs despite their advantages. To overcome each disadvantages of oxide and polymer electrolytes, we developed hybrid electrolytes for improved ionic conductivity, easy processing, and formation of continuous electrolyte/electrode interface. In this presentation, pragmatic approach and current challenges related to solid batteries will be discussed including innovative manufacturing process. Hybrid electrolytes and their synergistic effect on the battery performance as a promissing solution will be presented [Fig. 1]
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Liao, Cheng Hung, Chia-Chin Chen, Ru-Jong Jeng y Nae-Lih (Nick) Wu. "Application of Artificial Interphase on Ni-Rich Cathode Materials Via Hybrid Ceramic-Polymer Electrolyte in All Solid State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 1050. http://dx.doi.org/10.1149/ma2023-0161050mtgabs.

Texto completo
Resumen
Among many cathode materials, nickel-rich LiNi0.83Co0.12Mn0.05O2 (NCM 831205) has been spotlighted as one of the most feasible candidates for next-generation LIBs because of its high discharge capacity (~200 mAh/g). However, NCM 831205 shows significant performance degradation, which is mostly attributed to cation mixing, surface side reactions, and intrinsic structural instability originating from the large volume changes during repeated cycling. Conventional lithium ion batteries (LIB) normally use flammable nonaqueous liquid electrolytes, resulting in a serious safety issue in use. In this respect, all-solid-state batteries (ASSB) are regarded as a fundamental solution to address the safety issue by using a solid state electrolyte in place of the conventional liquid one. This work employed lithium sulfonate (SO3Li) tethered polymer, obtained from sulfonation of commercial polymer, to serve as the artificial protective coating on the active NCM831205 of the cathode for ASSB based on hybrid PEO-ceramic solid electrolyte. The coating layer should prevent direct contact of electrolyte with the cathode, thus avoid the negative effects such as microcracks of NCM831205 and undesired CEI formation. The preparation of hybrid ceramic-polymer electrolyte through a solvent-free process. The hybrid electrolytes exhibit good flexibility and processability with respect to pure ceramic and pure PEO polymer electrolyte. It is demonstrated that the hybrid electrolytes can penetrate into cathode under 60°C, providing a good Li+ transfer channel inside the battery. Moreover, the sulfone based polymer protective coating could effectively improve the electrochemical stability of the NCM831205 without sacrificing the battery performance. Keywords: NCM831205, Artificial Polymer Coating, All-Solid-State Batteries
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

LI, X. D., X. J. YIN, C. F. LIN, D. W. ZHANG, Z. A. WANG, Z. SUN y S. M. HUANG. "INFLUENCE OF I2 CONCENTRATION AND CATIONS ON THE PERFORMANCE OF QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS WITH THERMOSETTING POLYMER GEL ELECTROLYTE". International Journal of Nanoscience 09, n.º 04 (agosto de 2010): 295–99. http://dx.doi.org/10.1142/s0219581x10006831.

Texto completo
Resumen
Thermosetting polymer gel electrolytes (TPGEs) based on poly(acrylic acid)-poly(ethylene glycol) (PAA-PEG) hybrid were prepared and applied to fabricate dye-sensitized solar cells (DSCs). N-methylpyrrolidone (NMP) and γ-butyrolactone (GBL) were used as solvents for liquid electrolytes and LiI and KI as iodide source, separately. The microstructure of PAA-PEG shows a well swelling ability in liquid electrolyte and excellent stability of the swollen hybrid. The TPGE was optimized in terms of the liquid electrolyte absorbency and ionic conductivity photovoltaic performance. Quasi-solid-state DSCs containing TPGE with optimized KI electrolyte show higher efficiency, voltage, fill factor, and lower photocurrent than those with LiI electrolyte. The related mechanism was discussed. A quasi-solid-state DSC fabricated with optimized polymer gel electrolyte obtained an overall energy conversion efficiency of 4.90% under irradiation of 100 mW/cm2 (AM1.5).
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zahiri, Beniamin, Chadd Kiggins, Dijo Damien, Michael Caple, Arghya Patra, Carlos Juarez Yescaz, John B. Cook y Paul V. Braun. "Hybrid Halide Solid Electrolytes and Bottom-up Cell Assembly Enable High Voltage Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, n.º 2 (7 de julio de 2022): 327. http://dx.doi.org/10.1149/ma2022-012327mtgabs.

Texto completo
Resumen
Interface between halide based solid electrolytes and layered transition metal oxide cathodes has been found to be electro-chemically stable due to stability of chloride compounds, in particular, at >4V range. The extent of interfacial stability is correlated with the type of cationic and anionic species in the solid electrolyte compound, a fact supported by theoretical prediction and yet, not accurately measured in composite cathode mixtures. By altering the architecture of cathode into a dense additive-free structure, we have identified differences in interfacial stability of chloride compounds which are hidden in composite cathode formats. In this work, we report the use of dense cathode to track the electrochemical evolution of interface between a hybrid halide solid electrolyte composed of chloride and fluoride species. Introducing fluoride compounds is known to be a promising method to expand the oxidation stability while the nature of such expansion is found to be related to kinetics rather than thermodynamics, we report. Furthermore, fluorination of solid electrolyte is generally accompanied with loss of ionic conductivity due to strong electronegative fluoride ions. We demonstrate a fundamental change of solid-state battery assembly from conventional electrolyte pelletizing followed by electrode placement, to a bottom-up assembly route starting with dense cathode, thin (<20µm) layer of SE and anode addition, which compensates for the suppressed conductivity of fluorinated halide solid electrolytes. Through extensive characterization, compositional optimization, and electrochemical interfacial analysis, we demonstrate stable cycling of LiCoO2/hybrid halide solid electrolyte up to 4.4V vs. Li. Our findings pave the way for expanding the voltage stability of solid electrolytes without compromising the cell performance due to ionic conductivity overpotential issues.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhai, Yanfang, Wangshu Hou, Zongyuan Chen, Zhong Zeng, Yongmin Wu, Wensheng Tian, Xiao Liang et al. "A hybrid solid electrolyte for high-energy solid-state sodium metal batteries". Applied Physics Letters 120, n.º 25 (20 de junio de 2022): 253902. http://dx.doi.org/10.1063/5.0095923.

Texto completo
Resumen
Exploring solid electrolytes with promising electrical properties and desirable compatibility toward electrodes for safe and high-energy sodium metal batteries remains a challenge. In this work, these issues are addressed via an in situ hybrid strategy, viz., highly conductive and thermally stable 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide is immobilized in nanoscale silica skeletons to form ionogel via a non-hydrolytic sol-gel route, followed by hybridizing with polymeric poly(ethylene oxide) and inorganic conductor Na3Zr2Si2PO12. Such hybrid design yields the required solid electrolyte, which shows not only a stable electrochemical stability window of 5.4 V vs Na/Na+ but also an extremely high ionic conductivity of 1.5 × 10−3 S cm−1 at 25 °C, which is demonstrated with the interacted and monolithic structure of the electrolyte by SEM, XRD, thermogravimetric (TG), and XPS. Moreover, the capabilities of suppressing sodium metal dendrite growth and enabling high-voltage cathode Mg-doped P2-type Na0.67Ni0.33Mn0.67O2 are verified. This work demonstrates the potential to explore the required solid electrolytes by hybridizing an in situ ionogel, a polymer, and an inorganic conductor for safe and high-energy solid-state sodium metal batteries.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Vargas-Barbosa, Nella Marie, Sebastian Puls y Henry Michael Woolley. "Hybrid Material Concepts for Thiophosphate-Based Solid-State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 984. http://dx.doi.org/10.1149/ma2023-016984mtgabs.

Texto completo
Resumen
Solid-state batteries (SSBs) could replace conventional lithium-ion batteries due to the possibility of increasing the energy density of the cells by using lithium metal as the anode material.[1] Among the many electrolyte candidates for lithium SSBs, the lithium thiophosphates are particularly interesting due to their high ionic conductivities at room temperature (>1 mS/cm). However, the (electro)chemical stability of these solid electrolytes is limited and not fully compatible with state-of-the-art high-potential cathode active materials[2] or the lithium metal anode.[3] At the cell level, the formation of interparticle voids between the various battery components (solid electrolyte, cathode active material, anode material, additives, decomposition interphases) hinder the net transport during cycling. To address the latter electro-chemo-mechanical challenges, we are exploring hybrid material approaches, in which we combine established materials (solid electrolytes, liquid electrolytes and/or polymer additives) with state-of-the-art cathode active materials and test their electrochemical performance in solid-state battery (half-)cells. Such cycling results are complimented by detailed electrochemical transport studies in symmetrical cells using DC polarization and electrochemical impedance spectroscopy, including transmission-line modeling. ex.situ chemically-specific spectroscopic methods are used to support our hypotheses and interpretation of the electrochemical results. Taken together, we attain a better picture on the positive (or negative) role hybrid materials play in SSBs. In this talk, we will showcase two hybrid systems, namely ionic liquid/thiophosphate lithium hybrid electrolytes and conductive polymers additives in NMC-based catholyte composites for Li6PS5Cl cells. The first part of the talk we will discuss the results in which we evaluate the performance of liquid electrolyte-solid electrolyte materials against lithium metal using galvanostatic electrochemical impedance spectroscopy. In the second part, we elucidate the partial ionic and electronic transport in polymer electrolyte-Li6PS5Cl-NMC catholytes as a function of polymer content using impedance spectroscopy and its effect in the cycling performance, both the stability as well as the magnitude of the discharge capacities. These systems serve as a good starting point for the further development and incorporation of hybrid materials in SSBs. Literature: [1] W. G. Zeier and J. Janek Nature Energy, 2016, 1, 16141. [2] G.F. Dewald, S. Ohno, M.A. Kraft, R. Kroever, P. Till, N.M. Vargas-Barbosa, J. Janek, W.G. Zeier Chem. Mater. 2019, 31, 8328. [3] L. M. Riegger, R. Schlem, J. Sann, W. G. Zeier, J. Janek, Angew. Chem. Int Ed 2021, 60, 6718. Figure 1
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zaman, Wahid, Nicholas Hortance, Marm B. Dixit, Vincent De Andrade y Kelsey B. Hatzell. "Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries". Journal of Materials Chemistry A 7, n.º 41 (2019): 23914–21. http://dx.doi.org/10.1039/c9ta05118j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mohanty, Debabrata, Shu-Yu Chen y I.-Ming Hung. "Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries". Batteries 8, n.º 10 (9 de octubre de 2022): 173. http://dx.doi.org/10.3390/batteries8100173.

Texto completo
Resumen
Lithium-ion batteries are popular energy storage devices due to their high energy density. Solid electrolytes appear to be a potential replacement for flammable liquid electrolytes in lithium batteries. This inorganic/hybrid solid electrolyte is a composite of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, (poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) polymer and sodium superionic conductor (NASICON)-type Li1+xAlxTi2−x(PO4)3 (LATP) ceramic powder. The structure, morphology, mechanical behavior, and electrochemical performance of this composite solid electrolyte, based on various amounts of LiTFSI, were investigated. The lithium-ion transfer and conductivity increased as the LiTFSI lithium salt concentration increased. However, the mechanical strength apparently decreased once the percentage of LITFSI was over 60%. The hybrid electrolyte with 60% LiTFSI content showed high ionic conductivity of 2.14 × 10−4 S cm−1, a wide electrochemical stability window (3–6 V) and good electrochemical stability. The capacity of the Li|60% LiTFSI/PVDF-HFP/LATP| LiFePO4 solid-state lithium-metal battery was 103.8 mA h g−1 at 0.1 C, with a high-capacity retention of 98% after 50 cycles.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Hybrid solid electrolyte"

1

Basso-Bert, Thomas. "Etude de l'élaboration et des performances électrochimiques de séparateurs électrolytiques composites polymère-céramique pour des batteries au Lithium métal". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI036.

Texto completo
Resumen
Pour augmenter la densité d’énergie dans les générateurs électrochimiques, deux leviers sont habituellement étudiés : la capacité et le potentiel des matériaux d’électrodes. L’utilisation de lithium (Li) métal comme matériau d’électrode négative répond à ces enjeux puisqu’il présente une très grande capacité gravimétrique (3860 mAh/g) et un potentiel très bas (-3.04 V vs. SHE). Malheureusement, de nombreux phénomènes sont délétères au bon fonctionnement de cette négative idéale, comme la croissance de lithium dendritique au cours du cyclage qui entraine des fins de vie prématurées et des problèmes de sécurité. Une solution est de travailler avec des électrolytes solides, en lieu et place des électrolytes liquides organiques actuels des batteries Li-ion. Ainsi, la recherche se concentre sur le développement de nombreux matériaux d’électrolytes solides, bons conducteurs ionique, stables à bas et haut potentiels, peu coûteux, recyclables, etc. Malgré de grandes avancées que ce soit dans le domaine des électrolytes céramiques ou polymères (voire même des composites des deux), aucun matériau ne semble s’imposer pour l’heure [1].Dans ce contexte, un nouveau concept de membrane hybride polymère/céramique est étudié pour son intégration en batterie au Li métal [2][3]. Nous avons réalisé, par un procédé en voie fondu économique, sans solvant, et aisément extrapolable à l’échelle industrielle, un séparateur constitué d’une monocouche de grains d’électrolyte céramique Li1,3Al0,3Ti1,7(PO4)3 (LATP) jointoyée par un polymère (figure 1.a.). Les grains de LATP percolant de part et d’autre de la membrane apportent la conductivité aux ions Li+ tandis que le polymère à base de Poly(éthylène) assure la tenue mécanique, l’étanchéité aux solvants et sels de lithium, et l’isolation électrique. Le concept de ces membranes est de pouvoir optimiser l’anolyte et le catholyte indépendamment. La conductivité de telles membranes a été étudiée en fonction du pourcentage volumique de LATP (figure 1.b.) et atteint 0,491 mS/cm, à température ambiante, pour une membrane à 50%vol. De plus, le transfert de charge ionique à travers une cellule anolyte / membrane / catholyte a été étudiée par impédance électrochimique. La croissance dendritique en cellule symétrique Li / anolyte / membrane / anolyte / Li a aussi été étudié. Finalement, une batterie à haute densité d’énergie a été réalisée et cyclée à température ambiante.Références :[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)
To boost the energy density of lithium-based accumulators, two levers are commonly studied: the energy density and the potential of electrode materials. The use of Li metal as a negative electrode is undoubtedly an appropriate solution to address these challenges since it has the highest gravimetric capacity (3860mAh/g) and very low reducing potential (-3.04 V vs. Standard Hydrogen Electrode). However, a couple of harmful phenomena prevent from using this ideal negative electrode, such as the dendritic growth during the electrodeposition of Lithium metal when a conventional organic liquid electrolyte is used. As a result, the research has been focusing on the development of numerous solid-state electrolytes (SSE) materials, having high Li+ ionic conductivity, high Li+ transport number, large electrochemical stability window, low cost, recyclable. Despite of breakthroughs for both ceramics or polymers fields (and even composites of both), no room temperature SSE has been developed at industrial scale so far [1].In that context, a new concept [2] of composite polymer/ceramic membrane is studied to be implemented within a Lithium Metal battery. It consists of an electrolytic separator where the Li1.3Al0,3Ti1,7(PO4)3 (LATP) ceramic forms one mono layer of monocrystalline and monodispersed grains bonded with a Poly(ethylene)-based matrix. The LATP grains are the Li+ conducting media allowing the Li+ percolation from one side to another while the Poly(ethylene)-based matrix which is ionically and electronically insulating, and, above all, impermeable to most of conventional Li-ion batteries solvents and Li salts, ensuring both the membrane tightening and very good flexibility (figure 1.a.). Herein, this composite membrane is elaborated via a low cost, solvent free process thanks to extrusion and calendering which can be industrially upscaled unlike the very complex and multistep processes suggested in the literature so far [2,3]. The microstructure of the composite separators was characterized by SEM and X-ray Tomography imaging to better understand the influences of the ceramic, the polymer type, and the elaboration process parameters. The Li+ ionic conductivity of the composite membranes as a function of the ceramic content have been studied by electrochemical impedance spectroscopy (EIS) and a high conductivity of 0.49 mS/cm has been measured at 25°C (50vol% LATP, figure 1.b.). Acting as a chemical barrier, this composite membrane allows the optimization of electrolyte chemistries at both the anode side and the cathode sides. Hence, the ionic charge transfer mechanisms in symmetric electrolyte/membrane/electrolyte systems have been also studied by EIS to determine the driving parameters such as the solvent type, the Li salt type and concentration [4].References:[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)[4] Isaac, J. A., Mangani, L. R., Devaux, D. & Bouchet, R. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Appl. Mater. Interfaces 14, 13158–13168 (2022)
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Yahata, Yoshikazu. "Extended Design of Concentrated-Polymer-Brush-Decorated Hybrid Nanoparticles and Their Use for Phase-Separation Control". Kyoto University, 2018. http://hdl.handle.net/2433/232486.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chometon, Ronan. "Exploring the role of polymers in scaling up the manufacturing of solid-state batteries". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS046.

Texto completo
Resumen
Dans un contexte de transition vers les énergies renouvelables et d'électrification de la mobilité, les batteries sont un rouage indispensable à cette transformation. Alors que la technologie lithium-ion est aujourd'hui largement établie, la course à la performance en matière de densité d'énergie mise sur les batteries tout-solide, encore à l'état de prototype. Elles sont basées sur le principe du transfert de charge au travers de contacts purement solides, complexes à former et à maintenir, et donc sources de nombreux problèmes associés à leur fonctionnement. La mise à l'échelle des procédés de fabrication des batteries tout-solide est particulièrement critique et nécessite un changement de stratégie d'assemblage, en abandonnant le format en pastille pour tendre vers un montage en feuillets. Dans ce contexte, nos travaux de recherche ont porté sur le rôle des polymères dans l'adaptation du procédé d'assemblage, en tant que liant des particules inorganiques. Nous avons exploré deux stratégies qui se distinguent par rapport à la nature de ce liant, pouvant être conducteur ou non des ions lithium. Dans une première approche, l'électrolyte polymère PEO:LiTFSI a été utilisé pour préparer des films autosupportés d'électrolyte hybride à haut taux de charges inorganiques Li6PS5Cl, suivant un procédé à sec. L'instabilité des deux électrolytes en contact génère cependant une interphase trop résistive pour assurer une conduction ionique conjointe au sein de l'hybride. Dans un souci de simplification du système, une nouvelle approche a été adoptée, se basant sur un liant non conducteur, le PVDF-HFP, pour la préparation et le coulage en bande d'une encre afin d'obtenir des films d'électrodes et de séparateurs. Une optimisation minutieuse des paramètres a permis d'obtenir des résultats encourageants puisque que proches du système de référence ne contenant pas de liant, et ce même à basse pression de cyclage. La fiabilité du procédé développé au cours de cette thèse ouvre maintenant la voie vers l'assemblage de cellules tout-solide complètes, intégrant une anode à haute densité d'énergie telle que le lithium métal
The imperative transition toward renewable energy sources and the ongoing electrification of transportation position battery technologies at the forefront of this transformation. While the lithium-ion technology is already well-established, the quest for higher energy density has drawn significant attention to the emerging solid-state batteries (SSBs). Their working principle is based on ion and electron transfers through solid-solid contacts, which are complex to master and sustain, giving rise to most of the challenges associated with their realisation. Especially, the capability to scale up SSBs' fabrication process is critical for future implementation and calls for a shift from pellet-type to sheet-type assembly. Thus, this doctoral research delved into the role of polymers in facilitating this transition by exploring two strategies differing on the binder's ability to conduct lithium ions. In the first approach, we capitalised on the polymer electrolyte PEO:LiTFSI favourable mechanical properties to prepare self-standing films of hybrid solid electrolyte with a high content of Li6PS5Cl, using a dry process. However, the instability between the organic and inorganic phases resulted in a resistive interphase that prevents a shared conduction mechanism within the hybrid. After that, we pursued a simpler approach to fabricate self-standing SSBs by employing a conventional non-conductive binder, PVDF-HFP, and using a slurry-based tape casting process. The thorough optimisation of the formulation and preparation of the electrodes and solid-state separators gave promising results, closely approaching the electrochemical performance of binder-free reference SSBs, even under low operating pressure. The reliability of our fabrication process thus paves the way for assembling self-standing solid-state full cells, integrating high energy density anodes such as lithium metal
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lancel, Gilles. "Synthèse et caractérisation de membranes hybrides pour la conduction des ions lithium, et application dans les batteries lithium-air à électrolyte aqueux". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066011/document.

Texto completo
Resumen
La technologie lithium-air à électrolyte aqueux pourrait révolutionner le stockage de l'énergie, mais la protection du lithium métallique par une vitrocéramique conductrice du lithium reste une limitation importante. Cela rend le système plus fragile, limite sa cyclabilité et augmente la chute ohmique. L'objectif de ce travail a été de remplacer cette vitrocéramique par une membrane hybride réalisée par extrusion électro assistée ou electrospinning, qui combine des propriétés d'étanchéité à l'eau, de flexibilité et de conductivité du lithium. La conductivité ionique est apportée par la partie céramique, pour laquelle les matériaux Li1,4Al0,4Ti1,6(PO4)3 (LATP) et Li0,33La0,57TiO3 (LLTO) ont été étudiés. L'étanchéité est assurée par un polymère fluoré. Différentes voies de synthèse des poudres ont été étudiées et comparées en termes de pureté, de microstructure, de surface spécifique et de propriétés électrochimiques. En particulier, des particules de LATP sub-microniques ont été obtenues pour la première fois par chauffage micro-onde, en des temps aussi courts que 2 min. Des membranes ont ensuite été réalisées à partir de suspensions. Dans une seconde approche, un réseau de nanofibres interconnectées et conductrices du lithium a été réalisé par couplage entre la chimie sol-gel et le procédé d'electrospinning. L'imprégnation de ce réseau donne une membrane hybride flexible, conductrice du lithium et étanche à l'eau. Un renforcement mécanique par les fibres inorganiques est observé. Cette approche a été appliquée aux deux matériaux LATP et LLTO. Ce travail ouvre de nombreuses perspectives pour les batteries lithium-air, lithium soufre et lithium-ion
Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic conductivity is provided by a nanostructured solid electrolyte ceramic: both Li1,4Al0,4Ti1,6(PO4)3 (LATP) and Li0,33La0,57TiO3 (LLTO) were studied. The water tightness is ensured by a fluorinated polymer. Different powders synthesis methods are reported and compared in terms of purity, microstructure, specific surface area and electrochemical properties. Especially, the LATP microwave-assisted synthesis is reported for the first time. Sub-micrometric LATP particles were obtained in times as short as 2 min. The fabrication of hybrid membranes from suspension is then reported. In a second approach, the coupling between sol-gel chemistry and electrospinning made possible the fabrication of a self-standing lithium-conducting network, made of interconnected crystalline nanofibers. After an impregnation step, a flexible, lithium-conducting and watertight hybrid membrane is obtained. A mechanical reinforcement is observed, which is attributed to the inorganic nanofibers. This approach is exposed for both LATP and LLTO solid electrolytes. This work opens new prospects in lithium-air, lithium-sulfur and lithium-ion batteries
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Leclercq, Florent. "Étude d'électrolytes hybrides solides destinés aux batteries lithium". Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET068.

Texto completo
Resumen
Au cours de cette thèse, nous avons comparé deux voies d’élaboration d’un électrolyte solide hybride composé d’un mélange de deux polymères (PEO et PVDF-HFP), d’un sel de lithium (LiTFSI), et d’un réseau de silice formé in situ par voie sol-gel et fonctionnalisé par des groupements imidazolium Dans un premier temps, nous avons utilisé le procédé de coulée-évaporation pour étudier l’influence des différents constituants sur les propriétés physico-chimiques et électrochimiques. Des conductivités de 10⁻⁴ S/cm à 80°C ont été atteintes, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/10 à la même température. Le procédé d’extrusion électro-assistée a ensuite été utilisé afin de fabriquer un squelette de nanofibres hybrides PVDF-HFP/silice (fonctionnalisée ou non) dont la porosité est remplie par un mélange PEO/LiTFSI. L’architecture particulière de l’électrolyte ainsi fabriqué permet de découpler les propriétés de conduction des propriétés mécaniques. Les conductivités obtenues à 80°C sont de 5.10⁻⁴ S/cm, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/2 à la même température. Les mêmes squelettes hybrides « électrospinnés » ont été évalués en tant que séparateur pour des électrolytes aqueux super-concentrés (également appelés water-in-salt). Leurs excellentes propriétés de mouillage et de rétention permettent d’assurer le fonctionnement d’une batterie LiMn₂O₄/TiO₂ à des régimes atteignant 10C tout en diminuant la quantité d’électrolyte nécessaire
This work focuses on the comparison of two processes for the elaboration of a solid hybrid electrolyte made of a mix of two polymers (PEO and PVDF-HFP), a lithium salt (LiTFSI), and of a silica network made in situ via a sol-gel method and functionalized with imidazolium groups. At first, the influence of the different components on the physicochemical and electrochemical properties of electrolytes made by dry casting is studied. Conductivities of 10⁻⁴ S/cm at 80 °C allow us to cycle LiFePO₄/Li batteries at a C/10 rate at the same temperature. A skeleton of hybrid PVDF-HFP/silica (functionalized or not) nanofibers is synthesized by electrospinning and its porosity is filled with a PEO/LiTFSI mix. The particular architecture of this type of electrolyte enables the decoupling of conduction and mechanical properties. Conductivities of 5.10-4 S/cm at 80 °C allow the cycling of LiFePO₄/Li batteries at a C/2 rate at the same temperature. The same electrospun hybrid membranes are evaluated as separators for hybrid water-in-salt electrolytes. Thanks to their excellent wetting and retention properties, LiMn₂O₄/TiO₂ batteries are cycled at a 10C rate with a low quantity of electrolyte
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lancel, Gilles. "Synthèse et caractérisation de membranes hybrides pour la conduction des ions lithium, et application dans les batteries lithium-air à électrolyte aqueux". Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066011.

Texto completo
Resumen
La technologie lithium-air à électrolyte aqueux pourrait révolutionner le stockage de l'énergie, mais la protection du lithium métallique par une vitrocéramique conductrice du lithium reste une limitation importante. Cela rend le système plus fragile, limite sa cyclabilité et augmente la chute ohmique. L'objectif de ce travail a été de remplacer cette vitrocéramique par une membrane hybride réalisée par extrusion électro assistée ou electrospinning, qui combine des propriétés d'étanchéité à l'eau, de flexibilité et de conductivité du lithium. La conductivité ionique est apportée par la partie céramique, pour laquelle les matériaux Li1,4Al0,4Ti1,6(PO4)3 (LATP) et Li0,33La0,57TiO3 (LLTO) ont été étudiés. L'étanchéité est assurée par un polymère fluoré. Différentes voies de synthèse des poudres ont été étudiées et comparées en termes de pureté, de microstructure, de surface spécifique et de propriétés électrochimiques. En particulier, des particules de LATP sub-microniques ont été obtenues pour la première fois par chauffage micro-onde, en des temps aussi courts que 2 min. Des membranes ont ensuite été réalisées à partir de suspensions. Dans une seconde approche, un réseau de nanofibres interconnectées et conductrices du lithium a été réalisé par couplage entre la chimie sol-gel et le procédé d'electrospinning. L'imprégnation de ce réseau donne une membrane hybride flexible, conductrice du lithium et étanche à l'eau. Un renforcement mécanique par les fibres inorganiques est observé. Cette approche a été appliquée aux deux matériaux LATP et LLTO. Ce travail ouvre de nombreuses perspectives pour les batteries lithium-air, lithium soufre et lithium-ion
Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic conductivity is provided by a nanostructured solid electrolyte ceramic: both Li1,4Al0,4Ti1,6(PO4)3 (LATP) and Li0,33La0,57TiO3 (LLTO) were studied. The water tightness is ensured by a fluorinated polymer. Different powders synthesis methods are reported and compared in terms of purity, microstructure, specific surface area and electrochemical properties. Especially, the LATP microwave-assisted synthesis is reported for the first time. Sub-micrometric LATP particles were obtained in times as short as 2 min. The fabrication of hybrid membranes from suspension is then reported. In a second approach, the coupling between sol-gel chemistry and electrospinning made possible the fabrication of a self-standing lithium-conducting network, made of interconnected crystalline nanofibers. After an impregnation step, a flexible, lithium-conducting and watertight hybrid membrane is obtained. A mechanical reinforcement is observed, which is attributed to the inorganic nanofibers. This approach is exposed for both LATP and LLTO solid electrolytes. This work opens new prospects in lithium-air, lithium-sulfur and lithium-ion batteries
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Weldekidan, Ephrem Terefe. "Design of lithium ion conducting porous hybrid materials for the development of solid Li-battery electrolytes". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0707.

Texto completo
Resumen
Dans ce travail, des matériaux hybrides polymères-silice poreuse sous forme de poudre et de film mince ont été synthétisés et caractérisés. L'étude préliminaire de leurs conductivité ionique Li+ a également été réalisée. Les poudres hybrides ont été synthétisées par voie sol-gel en utilisant des triblocs classiques (Pluronic, P123) et des diblocs copolymères amphiphiles bifonctinels fabriqués en laboratoire comme agents dirigeant la structure (SDA). Dans le premier cas, la modification post-synthétique a été utilisée pour fonctionnaliser la surface des pores de la silice avec du PEO. Dans un second temps, la fonctionnalisation de la surface des pores avec le bloc hydrophile (PEO) a été réalisée par extraction du bloc hydrophobe. Des films de silice avec des mésocanaux ordonnés de manière hexagonale et orientés verticalement ont été synthétisés sur la surface de l'électrode via un procédé d'auto-assemblage électro-assisté dans des conditions hydrodynamiques. Les films formés sont mésoporeux (3 nm de diamètre) et entièrement accessibles. Un film de 660 nm d'épaisseur a été obtenu en 200 secondes. Ce film a été fonctionnalisé avec du PEO puis du sel de lithium par le biais d'une méthode d'imprégnation en solution. La conductivité ionique des matériaux hybrides a été étudiée après la mise en forme de la poudre sous forme de pastille ou de film directement formé à la surface de l'électrode. Les résultats montrent la conductivité des ions Li+ apportée aux matériaux. Les pastilles ont une porosité interparticulaire de 40% et le remplissage avec l’électrolyte polymère a un effet positif sur l’optimisation de la conductivité des pastilles
In this work, porous polymer-silica hybrid materials as a powder and thin film are synthesized and characterized. The preliminary study of their Li+ ionic conductivity properties are carried out as well. Here, the polymer electrolyte is embedded in silica matrix - polymer-in-ceramic approach. The hybrid powders are synthesized through sol-gel using conventional triblock (Pluronic, P123) and laboratory made bifunctional diblock amphiphilic copolymers as structure directing agents (SDA). In the first case, post-synthetic modification is used to functionalize the pore surface of silica with PEO. The second allowed to direct functionalization the pore surface with hydrophilic block (PEO) through extraction of hydrophobic block. Particle-free mesoporous silica films with hexagonally ordered and vertically oriented mesochannels are synthesized on electrode surface via electro-assisted self-assembly method under hydrodynamic condition. The resulting films are mesoporous (a diameter of 3 nm) and fully accessible. A film with thickness of 660 nm was grown in 200 s, and functionalized with PEO and then lithium salt through solution impregnation method. The ionic conductivity properties of hybrids were performed after shaping the powder as a pellet or with the hybrid film directly formed on the electrode surface. The results showed that the Li+ conductivity brought to the materials. The pellets have 40 % interparticle porosity and filling this with polymer electrolyte has positive effect on optimizing conductivity of the pellets (2.0 x 10-7 Scm-1 for 35 % filling and 6.8 x 10-7 Scm-1 for 100% filling at 25 °C)
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Maouacine, Koceila. "Matériaux hybrides poreux silice/polymère comme électrolytes pour batterie lithium-ion tout solide". Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0024.

Texto completo
Resumen
La conception de batteries lithium-ion utilisant un électrolyte solide est actuellement l’une des voies les plus étudiées pour s’affranchir des problèmes de sécurité lié à ces dispositifs. Dans ces travaux de thèse, nous proposons une nouvelle approche d'élaboration d'un électrolyte hybride poreux silice/polymère, contenant une fraction massique plus élevée de silice mésoporeuse que de polymère. Deux morphologies de matériaux hybrides de silice ont été étudiées : sous forme de poudres compressées (pastilles) et sous forme de films minces. Dans la première partie du travail, une poudre de silice hybride a été synthétisée puis calcinée pour libérer la porosité. La silice mésoporeuse a, ensuite, été fonctionnalisée par imprégnation en solution avec différents polymères de type PEG de faible poids moléculaire puis, par un sel de lithium, le LiTFSI. Les poudres hybrides ont été compressées sous forme de pastilles, présentant une porosité inter- et intraparticulaire. Il a été montré que, les pastilles hybrides présentent des propriétés de conductivité ionique prometteuse lorsque les porosités inter et intraparticulaires sont remplies par le complexe PEG-LiTFSI pour PEG de faible masse molaire (300-600 g/mol). Dans la seconde partie, des films de silice mésoporeuse ont été déposés sur une électrode de carbone vitreux en utilisant une électrode à disque rotatif (RDE). Après avoir caractérisé ces films du point des propriétés texturales et de la microstructure, ces derniers ont été fonctionnalisés par le complexe PEG-LiTFSI via un procédé d’imprégnation et l’étude préliminaire de leur conductivité ionique a été réalisée
The design of lithium-ion batteries using a solid electrolyte is currently one of the most studied ways to overcome safety problem of these devices. In this thesis work, we propose a new approach to develop a porous silica/polymer hybrid electrolyte, containing a higher weight fraction of mesoporous silica than polymer. Two morphologies of silica hybrid materials were studied: as compressed powders (pellets) and as thin films. In the first part of the work, a hybrid silica powder was synthesized and then calcined to liberate the porosity. The mesoporous silica was then functionalized with different polymers of PEG of low molecular weight then by a simple solution impregnation. The hybrid powders were shaped as pellets, presenting inter- and intra-particle porosity. It was shown that the hybrid pellets present promising ionic conductivity properties when the inter- and intraparticle porosities are filled with the PEG-LiTFSI complex for PEG of low molar mass (300-600 g/mol). In the second part, mesoporous silica films were deposited on a glassy carbon electrode using a rotating disc electrode (RDE). After the characterization of these films from a textural properties and a microstructure point of view, they were functionalized by the PEG-LiTFSI complex via an impregnation process and the preliminary study of their ionic conductivity was performed
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Issa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.

Texto completo
Resumen
Les problématiques engendrées par l’extraction et l’utilisation intensives des ressources fossiles ont forcé l’humanité à se tourner vers le développement d’énergies renouvelables et de véhicules électriques. Cependant, ces technologies doivent être couplées à des moyens de stockage de l’énergie efficaces pour exploiter leur potentiel. Les systèmes embarquant une anode de lithium métallique sont particulièrement intéressants car ils présentent une densité d’énergie élevée. Cependant, cette technologie souffre de la formation de dendrites pouvant déclencher des courts-circuits provoquant l’explosion du dispositif. Ainsi, de nombreux efforts ont été consacrés à l’élaboration d’électrolytes solides polymères (SPE) à base de POE permettant de constituer une barrière qui bloque la croissance dendritique tout en préservant les propriétés de conduction ionique. Cependant, la conductivité ionique des SPE à base de POE décroît fortement avec la température. A l’heure actuelle, les meilleurs SPE de la littérature nécessiteraient de fonctionner à 60 °C, ce qui signifie qu’une partie de l’énergie de la batterie sera détournée de son utilisation pour maintenir cette température. Ainsi, l’objectif principal de ce travail de thèse est de concevoir un SPE permettant le fonctionnement de la technologie de batterie au lithium métal à température ambiante. Ces SPE doivent présenter une conductivité ionique élevée à température ambiante (≈ 10-4 S.cm-1) et des propriétés mécaniques permettant l’inhibition du phénomène de croissance dendritique. Pour cela, les objectifs du projet sont focalisés sur le développement de nouveaux SPE nanocomposites et hybrides
The problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hibino, Takashi, Atsuko Tomita, Mitsuru Sano, Toshio Kamiya, Masahiro Nagao y Pilwon Heo. "Sn0.9In0.1P2O7-Based Organic/Inorganic Composite Membranes : Application to Intermediate-Temperature Fuel Cells". The Electrochemical Society, 2007. http://hdl.handle.net/2237/18430.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Hybrid solid electrolyte"

1

Kim, Ji Sook, Sun Hwa Lee y Dong Wook Shin. "Fabrication of Hybrid Solid Electrolyte by LiPF6 Liquid Electrolyte Infiltration into Nano-Porous Na2O-SiO2-B2O3 Glass Membrane". En Solid State Phenomena, 1027–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bejjanki, Dinesh y Sampath Kumar Puttapati. "Supercapacitor Basics (EDLCs, Pseudo, and Hybrid)". En Multidimensional Nanomaterials for Supercapacitors: Next Generation Energy Storage, 29–48. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815223408124010004.

Texto completo
Resumen
Over the past few years, supercapacitors have been spotlighted because of the challenges faced by other energy storage systems. The supercapacitor possesses excellent power density and long-term durability with an eco-friendly nature. Due to their wide range of advantages, supercapacitors are applicable especially in electric vehicles, heavy-duty vehicles, telecommunication, electric aircraft, and consumer electronic products. As per the charge storage mechanism, supercapacitors are divided into three categories based on their charge-storing method: electric double-layer capacitors (EDLCs), pseudocapacitors, and hybrid capacitors. The electrode materials such as graphene, activated carbon, metal oxides, conducting polymers, etc., were widely applied, for better performance. The electrolyte is a crucial component in the mechanism of the supercapacitor to run the system at a higher voltage and thus there are various electrolytes such as solid, inorganic, and organic based on the application of the materials, and the electrolytes are chosen. However, the supercapacitors suffer from low energy density. Currently, research is more focused on advanced materials and various synthesis methods to overcome the drawbacks. This chapter provides a detailed understanding of supercapacitors with redox and non-redox reactions -the broad classification of the supercapacitor -their charge storage mechanism -various electrode materials -electrolytes (aqueous, non-aqueous, and solid) and current collectors, etc. Finally, the parameters that help in estimating the performance of supercapacitors are (specific capacitance, energy density, and power density) included.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Hybrid solid electrolyte"

1

Yoshida, Hideki, Shinji Amaha y Hisataka Yakabe. "Hybrid Systems Using Solid Oxide Fuel Cell and Polymer Electrolyte Fuel Cell". En ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66213.

Texto completo
Resumen
In this paper, the concept of an SOFC (Solid Oxide Fuel Cell) and PEFC (Polymer Electrolyte Fuel Cell) hybrid system is presented. Large-scale SOFC systems operated in a thermally self-sustainable state produce excess heat. The excess heat can be used for producing hydrogen. Several variations of hydrogen production systems are presented here. One way is to produce the hydrogen by using an extra reformer. Another way is purifying the off-fuel of SOFCs. The produced hydrogen can be used as the fuel for PEFCs. The overall electrical efficiency of a combination of an SOFC and PEFCs is higher than that of a standalone SOFC. When the hydrogen produced by purifying the off-fuel of the SOFC is used as the fuel for PEFCs, the overall electrical conversion efficiency increases by around 20%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hashim, Mohd Azman, Nadhrah Md Yatim, Nor Azura Che Mahmud, Nur Ezniera Shafieza Sazali, Ellisah Hamdan, Mohd Adib Yahya, Che Wan Zanariah Che Wan Ngah y Syahida Suhaimi. "Hybrid solid polymer electrolyte from diapers as separator for electrochemical double layer capacitor (EDLC)". En RECENT ADVANCEMENT ON APPLIED PHYSICS, INDUSTRIAL CHEMISTRY AND CHEMICAL TECHNOLOGY: Proceedings of the International Conference on Recent Advancements in Science and Technology 2017 (ICoRAST2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5041219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nishida, Kousuke, Toshimi Takagi y Shinichi Kinoshita. "Analysis of Electrochemical Performance and Exergy Loss in Solid Oxide Fuel Cell". En ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38094.

Texto completo
Resumen
A solid oxide fuel cell (SOFC) is expected to be applied to the distributed energy systems because of its high thermal efficiency and exhaust gas utilization. The exhaust heat from the SOFC can be transferred to the electric power by a gas turbine, and the high efficiency power generation can be achieved by constructing the SOFC and gas turbine hybrid system. In this study, the local processes in the electrodes and electrolyte of unit SOFC are analyzed taking into account the heat conduction, mass diffusion, electrode reactions and the transport of electron and oxygen ion. The temperature and concentration distributions perpendicular to the electrolyte membrane are shown. The effects of the operating conditions on the cell performance are also shown. Furthermore, the entropy generation and exergy loss of each process in the electrodes and electrolyte are analyzed and the reason for generating the exergy loss in the SOFC is clarified. It is noted that two electrode reactions are responsible for the major exergy loss.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gallagher, Tanya M., Constantin Ciocanel y Cindy Browder. "Structural Load Bearing Supercapacitors Using a PEGDGE Based Solid Polymer Electrolyte Matrix". En ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5113.

Texto completo
Resumen
The interest in developing multifunctional materials has greatly increased in the last decade. Power storage composites are just one class of multifunctional materials that has the potential to lead to significant size and weight reduction. Many electronic devices (i.e. laptops, cellphones, iPods, etc.) and mechanical systems that require or generate electrical power during operation (i.e., hybrid or fully electric cars, wind turbines, airplanes, etc.) could benefit substantially from these materials. While several types of power storage structural composites have been developed to date, i.e. composite batteries and fuel cells, structural load bearing super- and ultra-capacitors appear to be the most promising ones. To date, two classes of structural capacitors have been explored: dielectric and solid electrolyte capacitors; the former are suitable for applications where very high voltage bursts of electrical energy are needed, while the latter are suitable for applications where lower voltage levels are required (i.e. more general power storage/delivery applications). This paper describes the efforts made to develop and characterize electro-mechanically structural supercapacitors. The load-bearing supercapacitors discussed here have been made with carbon fiber weave electrodes and separators of various materials, glued together with a solid polymer electrolyte (SPE) matrix. Electrochemical characterization reported specific capacitances as high as 2.9μF/mm3 and energy densities as high as 4.9 kJ/g.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Maclay, James D., Jacob Brouwer y G. Scott Samuelsen. "Diurnal Temperature and Pressure Effects on Axial Turbo-Machinery Stability in Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems". En ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85057.

Texto completo
Resumen
A dynamic model of a 100 MW solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system has been developed and subjected to perturbations in diurnal ambient temperature and pressure as well as load sheds. The dynamic system responses monitored were the fuel cell electrolyte temperature, gas turbine shaft speed, turbine inlet temperature and compressor surge. Using a control strategy that primarily focuses on holding fuel cell electrolyte temperature constant and secondarily on maintaining gas turbine shaft speed, safe operation was found to occur for expected ambient pressure variation ranges and for ambient temperature variations up to 28 K, when tested non-simultaneously. When ambient temperature and pressure were varied simultaneously, stable operation was found to occur when the two are in phase but not when the two are out of phase. The latter case leads to shaft over-speed. Compressor surge was found to be more likely when the system is subjected to a load shed initiated at minimum ambient temperature rather than at maximum ambient temperature. Fuel cell electrolyte temperature was found to be well-controlled except in the case of shaft over-speeds. Turbine inlet temperature remained in safe bounds for all cases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

K., Lee T., A. Ahmad y N. Hasyareeda. "Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO2 for battery application". En THE 2014 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4895231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tanim, Tanvir R., Christopher D. Rahn y Niklas Legnedahl. "Elevated Temperatures Can Extend the Life of Lithium Iron Phosphate Cells in Hybrid Electric Vehicles". En ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9763.

Texto completo
Resumen
This study investigates the effects of elevated temperature on commercially available high power graphite/LiFePO4 cells using a temperature dependent, electrolyte enhanced, single particle model (ESPM-T) coupled with a Solid Electrolyte Interphase (SEI) layer growth aging model. The ESPM-T is capable of simulating up to 25C and 10 sec charge-discharge pulses within a 35–65% SOC window and 25°C to 40°C temperature range with less than 1% voltage error, so it is suitable for hybrid electric vehicle (HEV) applications. The aging model is experimentally validated with an aggressive HEV cycle running for 4 months with less than 1% error. Instead of defining battery End of Life (EOL) as an arbitrary percent of capacity loss, we use the cycle number when the battery voltage hits 3.6V/2V (maximum/minimum) voltage limits. This is the practical limit of operation without reduced performance. Simulations show that operating cells at 35°C increases their life by 45% compared to room temperature operation. If the cell temperature is increased stepwise, then battery life is increased 85% more with a 50°C cell temperature at EOL. Battery initial size can be reduced by 24% using this temperature set-point strategy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gadalla, Mohamed y Nabil Al Aid. "Analysis of a Hybrid PEMFC-SOFC Gas Turbine Power Plant". En ASME 2013 Power Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/power2013-98242.

Texto completo
Resumen
In this study, a complete economic analysis of integrating different types of fuel cells in Gas Turbine power plants is conducted. The paper investigates the performance of a hybrid system that comprises of a SOFC (Solid-Oxide-Fuel-Cell), a PEMFC (polymer electrolyte membrane fuel Cell), and SOFC-PEMFC which is/are integrated into a Gas Turbine power plant. Detailed modeling, thermodynamic, kinetic, geometric models are developed, implemented and validated for the synthesis/design and operational analysis of the combined hybrid system. The economic analysis is considered to be the basic concepts for thermo-economic optimization of the power plant under investigation, with the aim of finding the optimum set of design/operating parameters. Moreover, one of the aims of this paper is to present a detailed economic analysis of a highly coupled PEMFC-SOFC–GT hybrid plant, paying special attention to the sources of inefficiency and analyzing their variations with respect to changes in their operational parameters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Heberlein, J., D. Kolman y H. Chen'. "Hybrid Plasma Spray – PVD Coatings in Triple Torch Plasma Reactor". En ITSC2006, editado por B. R. Marple, M. M. Hyland, Y. C. Lau, R. S. Lima y J. Voyer. ASM International, 2006. http://dx.doi.org/10.31399/asm.cp.itsc2006p1329.

Texto completo
Resumen
Abstract A reactor and process are described that allow the variation of the plasma deposition conditions such that a wide range of coating properties can be obtained. The reactor consists of three plasma torches mounted such that the deposition precursors can be injected centrally into the merging jets. This reactor has been used to deposit the different layers of a solid oxide fuel cell, including the very dense (99.5% density) zirconia electrolyte layer. Investigation of the zirconia layer showed a microstructure which has characteristics of both plasma sprayed coatings and vapor deposited coatings. The region of particle heating and acceleration has been characterized with enthalpy probes resulting in velocity and temperature fields. Calculations have been performed to describe the particle heating histories. The results show that a significant fraction of the particles evaporate and condense at the surface thus contributing to the formation of the dense layer. This hybrid process combines the possibility of obtaining high density coatings as with a PVD process with the rapid deposition rate of a plasma spray process.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Moura, Scott J., Jeffrey L. Stein y Hosam K. Fathy. "Battery-Health Conscious Power Management for Plug-In Hybrid Electric Vehicles via Stochastic Control". En ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4089.

Texto completo
Resumen
This paper investigates power management algorithms that optimally manage lithium-ion battery pack health, in terms of anode-side film growth, for plug-in hybrid electric vehicles (PHEVs). Specifically, we integrate a reduced electrochemical model of solid electrolyte interface (SEI) film formation into a stochastic dynamic programming formulation of the PHEV power management problem. This makes it possible to optimally trade off energy consumption cost versus battery health. A careful analysis of the resulting Pareto-optimal set of power management solutions provides two important insights into the tradeoffs between battery health and energy consumption cost in PHEVs. First, optimal power management solutions that minimize energy consumption cost tend to ration battery charge, while the solutions that minimize battery health degradation tend to deplete charge aggressively. Second, solutions that balance the needs for minimum energy cost and maximum battery health tend to aggressively deplete battery charge at high states of charge (SOCs), then blend engine and battery power at lower SOCs. These results provide insight into the fundamental tradeoffs between battery health and energy cost in PHEV power management.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Hybrid solid electrolyte"

1

Oh, Kyeong-Seok, Shuai Yuan y Sang-Young Lee. Scalable semi-solid batteries based on hybrid polymer-liquid electrolytes. Peeref, junio de 2023. http://dx.doi.org/10.54985/peeref.2306p1973287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía