Literatura académica sobre el tema "Hybrid classifier"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hybrid classifier".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hybrid classifier"
Demidova, Liliya y Maksim Egin. "Data classification based on the hybrid intellectual technology". ITM Web of Conferences 18 (2018): 04001. http://dx.doi.org/10.1051/itmconf/20181804001.
Texto completoYOUNG KOO, JA y MYUNGHWAN KIM. "An improved hybrid classifier". International Journal of Remote Sensing 7, n.º 3 (marzo de 1986): 471–76. http://dx.doi.org/10.1080/01431168608954702.
Texto completoZhiwen Yu, Le Li, Jiming Liu y Guoqiang Han. "Hybrid Adaptive Classifier Ensemble". IEEE Transactions on Cybernetics 45, n.º 2 (febrero de 2015): 177–90. http://dx.doi.org/10.1109/tcyb.2014.2322195.
Texto completoSharma, Richa y Shailendra Narayan Singh. "An Efficient Hybrid Classifier for Prognosing Cardiac Disease". Webology 19, n.º 1 (20 de enero de 2022): 5028–46. http://dx.doi.org/10.14704/web/v19i1/web19338.
Texto completoKotsiantis, Sotiris. "A hybrid decision tree classifier". Journal of Intelligent & Fuzzy Systems 26, n.º 1 (2014): 327–36. http://dx.doi.org/10.3233/ifs-120741.
Texto completoYu, Zhiwen, Hantao Chen, Jiming Liuxs, Jane You, Hareton Leung y Guoqiang Han. "Hybrid $k$ -Nearest Neighbor Classifier". IEEE Transactions on Cybernetics 46, n.º 6 (junio de 2016): 1263–75. http://dx.doi.org/10.1109/tcyb.2015.2443857.
Texto completoDemidova, Liliya A. "Two-Stage Hybrid Data Classifiers Based on SVM and kNN Algorithms". Symmetry 13, n.º 4 (7 de abril de 2021): 615. http://dx.doi.org/10.3390/sym13040615.
Texto completoLiu, Su Houn, Hsiu Li Liao, Shih Ming Pi y Chih Chiang Kao. "Patent Classification Using Hybrid Classifier Systems". Advanced Materials Research 187 (febrero de 2011): 458–63. http://dx.doi.org/10.4028/www.scientific.net/amr.187.458.
Texto completoRangel-Díaz-de-la-Vega, Adolfo, Yenny Villuendas-Rey, Cornelio Yáñez-Márquez, Oscar Camacho-Nieto y Itzamá López-Yáñez. "Impact of Imbalanced Datasets Preprocessing in the Performance of Associative Classifiers". Applied Sciences 10, n.º 8 (16 de abril de 2020): 2779. http://dx.doi.org/10.3390/app10082779.
Texto completoAnagnostopoulos, Theodoros y Christos Skourlas. "Ensemble majority voting classifier for speech emotion recognition and prediction". Journal of Systems and Information Technology 16, n.º 3 (5 de agosto de 2014): 222–32. http://dx.doi.org/10.1108/jsit-01-2014-0009.
Texto completoTesis sobre el tema "Hybrid classifier"
Vishnampettai, Sridhar Aadhithya. "A Hybrid Classifier Committee Approach for Microarray Sample Classification". University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1312341058.
Texto completoNair, Sujit S. "Coarse Radio Signal Classifier on a Hybrid FPGA/DSP/GPP Platform". Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/76934.
Texto completoMaster of Science
Zimit, Sani Ibrahim. "Hybrid approach to interpretable multiple classifier system for intelligent clinical decision support". Thesis, University of Reading, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.631699.
Texto completoLou, Wan Chan. "A hybrid model of tree classifier and neural network for university admission recommender system". Thesis, University of Macau, 2008. http://umaclib3.umac.mo/record=b1783609.
Texto completoToubakh, Houari. "Automated on-line early fault diagnosis of wind turbines based on hybrid dynamic classifier". Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10100/document.
Texto completoThis thesis addresses the problem of automatic detection and isolation of drift-like faults in wind turbines (WTs). The main aim of this thesis is to develop a generic on-line adaptive machine learning and data mining scheme that integrates drift detection and isolation mechanism in order to achieve the simple and multiple drift-like fault diagnosis in WTs, in particular pitch system and power converter. The proposed scheme is based on the decomposition of the wind turbine into several components. Then, a classifier is designed and used to achieve the diagnosis of faults impacting each component. The goal of this decomposition into components is to facilitate the isolation of faults and to increase the robustness of the scheme in the sense that when the classifier related to one component is failed, the classifiers for the other components continue to achieve the diagnosis for faults in their corresponding components. This scheme has also the advantage to take into account the WT hybrid dynamics. Indeed, some WT components (as pitch system and power converter) manifest both discrete and continuous dynamic behaviors. In each discrete mode, or a configuration, different continuous dynamics are defined
Rasheed, Sarbast. "A Multiclassifier Approach to Motor Unit Potential Classification for EMG Signal Decomposition". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/934.
Texto completoThis thesis addresses the process of EMG signal decomposition by developing an interactive classification system, which uses multiple classifier fusion techniques in order to achieve improved classification performance. The developed system combines heterogeneous sets of base classifier ensembles of different kinds and employs either a one level classifier fusion scheme or a hybrid classifier fusion approach.
The hybrid classifier fusion approach is applied as a two-stage combination process that uses a new aggregator module which consists of two combiners: the first at the abstract level of classifier fusion and the other at the measurement level of classifier fusion such that it uses both combiners in a complementary manner. Both combiners may be either data independent or the first combiner data independent and the second data dependent. For the purpose of experimentation, we used as first combiner the majority voting scheme, while we used as the second combiner one of the fixed combination rules behaving as a data independent combiner or the fuzzy integral with the lambda-fuzzy measure as an implicit data dependent combiner.
Once the set of motor unit potential trains are generated by the classifier fusion system, the firing pattern consistency statistics for each train are calculated to detect classification errors in an adaptive fashion. This firing pattern analysis allows the algorithm to modify the threshold of assertion required for assignment of a motor unit potential classification individually for each train based on an expectation of erroneous assignments.
The classifier ensembles consist of a set of different versions of the Certainty classifier, a set of classifiers based on the nearest neighbour decision rule: the fuzzy k-NN and the adaptive fuzzy k-NN classifiers, and a set of classifiers that use a correlation measure as an estimation of the degree of similarity between a pattern and a class template: the matched template filter classifiers and its adaptive counterpart. The base classifiers, besides being of different kinds, utilize different types of features and their performances were investigated using both real and simulated EMG signals of different complexities. The feature sets extracted include time-domain data, first- and second-order discrete derivative data, and wavelet-domain data.
Following the so-called overproduce and choose strategy to classifier ensemble combination, the developed system allows the construction of a large set of candidate base classifiers and then chooses, from the base classifiers pool, subsets of specified number of classifiers to form candidate classifier ensembles. The system then selects the classifier ensemble having the maximum degree of agreement by exploiting a diversity measure for designing classifier teams. The kappa statistic is used as the diversity measure to estimate the level of agreement between the base classifier outputs, i. e. , to measure the degree of decision similarity between the base classifiers. This mechanism of choosing the team's classifiers based on assessing the classifier agreement throughout all the trains and the unassigned category is applied during the one level classifier fusion scheme and the first combiner in the hybrid classifier fusion approach. For the second combiner in the hybrid classifier fusion approach, we choose team classifiers also based on kappa statistics but by assessing the classifiers agreement only across the unassigned category and choose those base classifiers having the minimum agreement.
Performance of the developed classifier fusion system, in both of its variants, i. e. , the one level scheme and the hybrid approach was evaluated using synthetic simulated signals of known properties and real signals and then compared it with the performance of the constituent base classifiers. Across the EMG signal data sets used, the hybrid approach had better average classification performance overall, specially in terms of reducing the number of classification errors.
McCool, Christopher Steven. "Hybrid 2D and 3D face verification". Thesis, Queensland University of Technology, 2007. https://eprints.qut.edu.au/16436/1/Christopher_McCool_Thesis.pdf.
Texto completoMcCool, Christopher Steven. "Hybrid 2D and 3D face verification". Queensland University of Technology, 2007. http://eprints.qut.edu.au/16436/.
Texto completoAl-Ani, Ahmed Karim. "An improved pattern classification system using optimal feature selection, classifier combination, and subspace mapping techniques". Thesis, Queensland University of Technology, 2002.
Buscar texto completoAla'raj, Maher A. "A credit scoring model based on classifiers consensus system approach". Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/13669.
Texto completoLibros sobre el tema "Hybrid classifier"
Wozniak, Michal. Hybrid Classifiers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40997-4.
Texto completoWozniak, Michal. Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination. Springer London, Limited, 2013.
Buscar texto completoWozniak, Michal. Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination. Springer, 2013.
Buscar texto completoWozniak, Michal. Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination. Springer Berlin / Heidelberg, 2016.
Buscar texto completoFerguson, Ben y Hillel Steiner. Exploitation. Editado por Serena Olsaretti. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199645121.013.21.
Texto completoMarcus, Smith y Leslie Nico. Part I The Nature of Intangible Property, 6 Equity and Debt Securities. Oxford University Press, 2018. http://dx.doi.org/10.1093/law/9780198748434.003.0006.
Texto completoSmalskys, Vainius y Jolanta Urbanovič. Civil Service Systems. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228637.013.160.
Texto completoCapítulos de libros sobre el tema "Hybrid classifier"
Woźniak, Michał. "Classifier Hybridization". En Hybrid Classifiers, 95–140. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40997-4_3.
Texto completoFrédéric, R. y G. Serge. "An Efficient Nearest Neighbor Classifier". En Hybrid Evolutionary Algorithms, 127–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73297-6_6.
Texto completoJun, Goo y Joydeep Ghosh. "Hybrid Hierarchical Classifiers for Hyperspectral Data Analysis". En Multiple Classifier Systems, 42–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02326-2_5.
Texto completoCohen, Shimon y Nathan Intrator. "Forward and Backward Selection in Regression Hybrid Network". En Multiple Classifier Systems, 98–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45428-4_10.
Texto completoTian, Qi, Jie Yu y Thomas S. Huang. "Boosting Multiple Classifiers Constructed by Hybrid Discriminant Analysis". En Multiple Classifier Systems, 42–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11494683_5.
Texto completoCohen, Shimon y Nathan Intrator. "A hybrid projection based and radial basis function architecture". En Multiple Classifier Systems, 147–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45014-9_14.
Texto completoCohen, Shimon y Nathan Intrator. "Automatic Model Selection in a Hybrid Perceptron/Radial Network". En Multiple Classifier Systems, 440–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-48219-9_44.
Texto completoCohen, Shimon y Nathan Intrator. "A Study of Ensemble of Hybrid Networks with Strong Regularization". En Multiple Classifier Systems, 227–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44938-8_23.
Texto completoKim, Byung Joo. "A Classifier for Big Data". En Convergence and Hybrid Information Technology, 505–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32692-9_63.
Texto completoVan, Nguyen Duc, Nguyen Ngoc Doanh, Nguyen Trong Khanh y Nguyen Thi Ngoc Anh. "Hybrid Classifier by Integrating Sentiment and Technical Indicator Classifiers". En Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 25–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77818-1_3.
Texto completoActas de conferencias sobre el tema "Hybrid classifier"
Kitanovski, Ivan, Gjorgji Madzarov y Dejan Gjorgjevikj. "Local hybrid SVMDT classifier". En 2011 19th Telecommunications Forum Telfor (TELFOR). IEEE, 2011. http://dx.doi.org/10.1109/telfor.2011.6143658.
Texto completoBernardini, Flávia Cristina, Ronaldo C. Prati y Maria Carolina Monard. "Evolving Sets of Symbolic Classifiers into a Single Symbolic Classifier Using Genetic Algorithms". En 2008 8th International Conference on Hybrid Intelligent Systems (HIS). IEEE, 2008. http://dx.doi.org/10.1109/his.2008.158.
Texto completoIqbal, Raja T. y Uvais Qidwai. "Boosted human-centric hybrid classifier". En the 43rd annual southeast regional conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1167350.1167373.
Texto completoGulhane, Yogesh H. y S. A. Ladhake. "Hybrid Approach of Emotion Classifier". En 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE, 2018. http://dx.doi.org/10.1109/iceca.2018.8474546.
Texto completoKabbai, Leila, Mehrez Abdellaoui y Ali Douik. "Hybrid classifier using SIFT descriptor". En 2013 International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2013. http://dx.doi.org/10.1109/codit.2013.6689576.
Texto completoRadha, R. y R. R. Aparna. "Digit Recognition Using Hybrid Classifier". En 2014 World Congress on Computing and Communication Technologies (WCCCT). IEEE, 2014. http://dx.doi.org/10.1109/wccct.2014.18.
Texto completoYamsaniwar, Sucheta, Surekha Tadse, Saikat Ranajit y Rutvik Walde. "Glaucoma and Cataract Hybrid Classifier". En 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22). IEEE, 2022. http://dx.doi.org/10.1109/icetet-sip-2254415.2022.9791833.
Texto completoBarbosa, José Matheus Lacerda, Adriano Marabuco de Albuquerque Lima, Paulo Salgado Gomes de Mattos Neto y Adriano Lorena Inácio de Oliveira. "Hybrid Swarm Enhanced Classifier Ensembles". En Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2021. http://dx.doi.org/10.5753/eniac.2021.18263.
Texto completoLanaridis, A., V. Karakasis y A. Stafylopatis. "Clonal Selection-Based Neural Classifier". En 2008 8th International Conference on Hybrid Intelligent Systems (HIS). IEEE, 2008. http://dx.doi.org/10.1109/his.2008.82.
Texto completoHartono, Pitoyo y Shuji Hashimoto. "Ensemble as a Piecewise Linear Classifier". En 2006 Sixth International Conference on Hybrid Intelligent Systems. IEEE, 2006. http://dx.doi.org/10.1109/his.2006.264915.
Texto completoInformes sobre el tema "Hybrid classifier"
Grigsby, Claude C., Ryan M. Kramer, Michael A. Zmuda, Derek W. Boone, Tyler C. Highlander y Mateen M. Rizki. Differential Profiling of Volatile Organic Compound Biomarker Signatures Utilizing a Logical Statistical Filter-Set and Novel Hybrid Evolutionary Classifiers. Fort Belvoir, VA: Defense Technical Information Center, abril de 2012. http://dx.doi.org/10.21236/ada562341.
Texto completoEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak y Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, julio de 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Texto completoDesai, Jairaj, Jijo K. Mathew, Howell Li, Rahul Sakhare, Deborah Horton y Darcy M. Bullock. National Mobility Analysis for All Interstate Routes in the United States. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317585.
Texto completoKirichek, Galina, Vladyslav Harkusha, Artur Timenko y Nataliia Kulykovska. System for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network. [б. в.], febrero de 2020. http://dx.doi.org/10.31812/123456789/3743.
Texto completoDesai, Jairaj, Jijo K. Mathew, Howell Li, Rahul Suryakant Sakhare, Deborah Horton y Darcy M. Bullock. National Mobility Report for All Interstates–December 2022. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317591.
Texto completo