Literatura académica sobre el tema "Human dental tissues"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Human dental tissues".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Human dental tissues"
Ratajczak, Jessica, Annelies Bronckaers, Yörg Dillen, Pascal Gervois, Tim Vangansewinkel, Ronald B. Driesen, Esther Wolfs, Ivo Lambrichts y Petra Hilkens. "The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering". Stem Cells International 2016 (2016): 1–17. http://dx.doi.org/10.1155/2016/9762871.
Texto completoSrot, Vesna, Birgit Bussmann, Ute Salzberger, Christoph T. Koch y Peter A. van Aken. "Linking Microstructure and Nanochemistry in Human Dental Tissues". Microscopy and Microanalysis 18, n.º 3 (12 de abril de 2012): 509–23. http://dx.doi.org/10.1017/s1431927612000116.
Texto completoVashisht, Neha y Divy Vashisht. "Dental Stem Cells". International Journal of Medical and Dental Sciences 3, n.º 1 (1 de enero de 2014): 376. http://dx.doi.org/10.19056/ijmdsjssmes/2014/v3i1/80741.
Texto completoGan, Lu, Ying Liu, Dixin Cui, Yue Pan, Liwei Zheng y Mian Wan. "Dental Tissue-Derived Human Mesenchymal Stem Cells and Their Potential in Therapeutic Application". Stem Cells International 2020 (1 de septiembre de 2020): 1–17. http://dx.doi.org/10.1155/2020/8864572.
Texto completoBaranova, Juliana, Dominik Büchner, Werner Götz, Margit Schulze y Edda Tobiasch. "Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate?" International Journal of Molecular Sciences 21, n.º 11 (4 de junio de 2020): 4031. http://dx.doi.org/10.3390/ijms21114031.
Texto completoRuschel, HC, GD Ligocki, DL Flaminghi y ACM Fossati. "Microstructure of Mineralized Tissues in Human Primary Teeth". Journal of Clinical Pediatric Dentistry 35, n.º 3 (1 de abril de 2011): 295–300. http://dx.doi.org/10.17796/jcpd.35.3.918k0t3270v01285.
Texto completoPagella, P., A. Cordiale, GD Marconi, O. Trubiani, M. Rasponi y TA Mitsiadis. "Bioengineered tooth emulation systems for regenerative and pharmacological purposes". European Cells and Materials 41 (10 de mayo de 2021): 502–16. http://dx.doi.org/10.22203/ecm.v041a32.
Texto completoHan, Jonghyeuk, Da Sol Kim, Ho Jang, Hyung-Ryong Kim y Hyun-Wook Kang. "Bioprinting of three-dimensional dentin–pulp complex with local differentiation of human dental pulp stem cells". Journal of Tissue Engineering 10 (enero de 2019): 204173141984584. http://dx.doi.org/10.1177/2041731419845849.
Texto completoSehic, Amer, Amela Tulek, Cuong Khuu, Minou Nirvani, Lars Peter Sand y Tor Paaske Utheim. "Regulatory roles of microRNAs in human dental tissues". Gene 596 (enero de 2017): 9–18. http://dx.doi.org/10.1016/j.gene.2016.10.009.
Texto completoMartin-Gonzalez, Jenifer, Juan J. Segura-Egea, Antonio Pérez-Pérez, Daniel Cabanillas-Balsera y Víctor Sánchez-Margalet. "Leptin in Dental Pulp and Periapical Tissues: A Narrative Review". International Journal of Molecular Sciences 23, n.º 4 (11 de febrero de 2022): 1984. http://dx.doi.org/10.3390/ijms23041984.
Texto completoTesis sobre el tema "Human dental tissues"
Abdullah, Ahmed. "In vitro and in situ studies to investigate the erosion of human dental tissues". Thesis, University of Leeds, 2009. http://etheses.whiterose.ac.uk/11292/.
Texto completoSui, Tan. "Thermal-mechanical behaviour of the hierarchical structure of human dental tissue". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:2c8e9604-ec4b-4cfa-b6df-fff3e6579492.
Texto completoMontgomery, Janet. "Lead and strontium isotope compositions of human dental tissues as an indicator of ancient exposure and population dynamics". Thesis, University of Bradford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.527341.
Texto completoAl-Hazaimeh, Nawaf Ismail. "Revascularization of human dental pulp using tissue engineering approaches". Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582741.
Texto completoFeeney, Robin N. M. "MICROTOMOGRAPHIC ANALYSIS OF SEXUAL DIMORPHISM AND DENTAL TISSUE DISTRIBUTION IN HUMAN MOLARS". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250270343.
Texto completoRizk, Ahmed El Sayed Mahmoud. "Human dental pulp stem cells expressing TGF{221}-3 transgene for cartilage-like tissue engineering". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47752890.
Texto completopublished_or_final_version
Dentistry
Doctoral
Doctor of Philosophy
Moretti, Rani da Cunha [UNIFESP]. "Medicação pré-operatória dexametasona – os efeitos na cultura primária de células de polpa dental humana". Universidade Federal de São Paulo (UNIFESP), 2015. http://repositorio.unifesp.br/handle/11600/39323.
Texto completoApproved for entry into archive by Maria Anália Conceição (marianaliaconceicao@gmail.com) on 2016-06-27T18:14:55Z (GMT) No. of bitstreams: 1 Publico-NOVO-19.pdf: 3346874 bytes, checksum: 17dd5440a6491e9f9e098ed990f9a67e (MD5)
Made available in DSpace on 2016-06-27T18:14:55Z (GMT). No. of bitstreams: 1 Publico-NOVO-19.pdf: 3346874 bytes, checksum: 17dd5440a6491e9f9e098ed990f9a67e (MD5) Previous issue date: 2015
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Rede Ibero-Americana de Biofabricação
Introdução: A aplicação de dexametasona em cultura de células mesenquimais induz diferenciação osteoblástica, consequentemente formação de tecidos mineralizados. A Engenharia Tecidual propõe o desenvolvimento de estratégias terapêuticas direcionadas à regeneração funcional e estrutural de tecidos biológicos. Nesse sentido, a caracterização celular in vitro é fundamental para garantir o desenvolvimento destas técnicas. Objetivo: Avaliar o efeito da dexametasona administrada como medicação pré-operatória na cultura de células primárias de polpa dental humana. Métodos: Foram utilizadas células provenientes da polpa de terceiros molares. Essas foram distribuídas em dois grupos experimentais com dois protocolos de medicação pré-operatória utilizados em rotina odontológica, onde no protocolo B, o paciente ingeria 1 comprimido de dexametasona 1hora antes à cirurgia e no A não. A avaliação da proliferação, viabilidade e diferenciação, foram pelos testes Trypan Blue, MTT, Von Kossa e Alizarin Red respectivamente, e realizadas em intervalos fixados. Análise de variância de Friedman e t test foram aplicados, fixando em 95% de confiança. Resultados: As células pertencentes ao protocolo A atingiram pico de proliferação aos 21 dias de cultura enquanto as células do protocolo B em 14. Células do protocolo A foram estatisticamente mais viáveis aos 7 e 21 dias enquanto as do protocolo B, aos 14. Na análise de Von Kossa e Alizarin Red observou-se que as células pertencentes ao protocolo B formaram nódulos de calcificação desde 7 dias de cultura enquanto no A aos 14. Conclusão: A utilização da dexametasona como medicação pré-operatória em cirurgia de terceiros molares promove diferenciação celular precocemente, quando observada in vitro.
Introduction: The use of dexamethasone in mesenchymal cell culture induces osteoblastic differentiation and, consequently, formation of mineralized tissues. Tissue Engineering proposes the development of therapeutic strategies aiming at structural and functional regeneration of biological tissues. In this sense, cell characterization in vitro is critical to ensure the development of such techniques. Objective: To evaluate the effect of dexamethasone administered as preoperative medication in primary cell culture of human dental pulp. Methods: We used cells from the third molar pulp. These cells were divided into two experimental groups, each with two preoperative medication protocols used in dental routine and differentiated by the intake of dexamethasone in one of them. The assessment of proliferation, differentiation, and viability through Trypan Blue, MTT and von Kossa, and Alizarin Red tests, respectively, were held in fixed intervals. Friedman analysis of variance and t test were applied, and confidence interval was set at 95%. Results: Protocol A cells proliferation reached its peak on day 21 while protocol B cells proliferation reached its peak on day 14. Protocol A cells were statistically more viable between days 7 and 21 whereas protocol B cells viability was higher on day 14. Von Kossa and Alizarin Red analyses showed that calcified nodules formation occurred from the seventh day of cell culture in protocol B cells and on day 14 in protocol A cells. Conclusion: The use of dexamethasone as preoperative medication in third molar surgery promotes cell differentiation earlier, when observed in vitro.
FAPESP: 07/51227-4
FAPESP: 08/57860-3
CNPq: 573661/2008-1
Pääkkönen, V. (Virve). "Expression profiling of human pulp tissue and odontoblasts in vivo and in vitro". Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514290053.
Texto completoMoharamzadeh, Keyvan. "Development of a tissue engineered human oral mucosal model for the assessment of the biocompatibility of resin-based dental materials". Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485086.
Texto completoTerada, Andrea Sayuri Silveira Dias. "Utilização do produto Allprotect Tissue Reagent® na estabilização do DNA extraído de tecidos dentais humanos em diferentes condições de armazenamento". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/58/58137/tde-17052013-110504/.
Texto completoThe genetic-molecular methodology stands out as an accurate technique for human identification process and among the sources of biological evidence, the use of teeth is of great interest in Forensic Dentistry. Maintaining integrity of the material sent to laboratory is essential for success of the analysis, and one of the main difficulties is related to sample storage, which is usually carried out at low temperatures. This study evaluated the effectiveness of the Allprotect Tissue Reagent® (Qiagen, Hilden, Germany) in stabilizing DNA extracted from human dental tissues stored under different conditions. In this study were used 165 teeth, distributed in two groups: intact teeth and isolated pulp tissue. The samples were stored with or without the product and varying the storage time (1, 7, 30 and 180 days) and temperature (room temperature and under refrigeration). In addition to these groups, was formed a positive control group, composed by five teeth, which was stored at -20ºC for 180 days. After storage, DNA extraction, electrophoresis on agarose gel and genomic DNA quantification by Real-Time PCR and fragments of 37 samples were performed. The fragments of 32 samples representing every possible condition and five positive control group samples were analyzed to verify four pre-selected markers. The agarose gel showed evidences of genomic DNA presence. Quantification results were statistically analyzed with the tests Kruscal-Wallis and Mann-Whitney. Quantification results showed values ranging from 0.01 to 10,246.88 ng/L of DNA. There was a decrease in DNA concentration in stored tooth samples at room temperature for 30 and 180 days compared to those stored for 1 and 7 days. Besides the time factor, temperature also influenced the DNA concentration, being higher in teeth that remained for 30 days and in tooth pulp maintained for 180 days, under refrigeration. Regarding the use of Allprotect Tissue Reagent® (Qiagen, Hilden, Germany) it showed a significant difference in stabilization of stored teeth at room temperature for 30 and 180 days. The analysis of fragments was possible in 37 selected samples, regardless of the DNA quantity variation, confirming that amplification reactions and STR analysis using automated methods provides good results. It was concluded that the use of Allprotect Tissue Reagent® (Qiagen, Hilden, Germany) showed a significant difference in stabilizing DNA samples of intact human teeth stored at room temperature for 30 and 180 days, while in the other test conditions the results showed no justification for using this product.
Libros sobre el tema "Human dental tissues"
Moss-Salentijn, Letty. Dental and oral tissues. 3a ed. Baltimore: Lea & Febiger, 1990.
Buscar texto completoMarlene, Hendricks-Klyvert, ed. Dental and oral tissues: An introduction. 2a ed. Philadelphia: Lea & Febiger, 1985.
Buscar texto completoMoss-Salentijn, Letty. Dental and oral tissues: An introduction. 3a ed. Philadelphia: Lea & Febiger, 1990.
Buscar texto completo1956-, Grupe Gisela y Peters Joris, eds. Microscopic examinations of bioarchaeological remains: Keeping a close eye on ancient tissues. Rahden/Westf: M. Leidorf, 2006.
Buscar texto completoHuman Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.92497.
Texto completoNaji, Stephan, William Rendu y Lionel Gourichon, eds. Dental Cementum in Anthropology. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781108569507.
Texto completoSimmer, J. P. Molecular Evolution and Genetic Defects of Teeth: Special Issue, Cells Tissues Organs 2007. S Karger Pub, 2007.
Buscar texto completoCapítulos de libros sobre el tema "Human dental tissues"
Sui, T., M. A. Sandholzer, E. L. Bourhis, N. Baimpas, G. Landini y A. M. Korsunsky. "Nano-Scale Thermo-Mechanical Structure-Property Relationships in Human Dental Tissues Studied by Nanoindentation and Synchrotron X-Ray Scattering". En IFMBE Proceedings, 251–54. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02913-9_64.
Texto completoThieringer, Florian M., Philipp Honigmann y Neha Sharma. "Medical Additive Manufacturing in Surgery: Translating Innovation to the Point of Care". En Future of Business and Finance, 359–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99838-7_20.
Texto completoBrès, E. F., J. Reyes-Gasga y J. Hemmerlé. "Human Tooth Enamel, a Sophisticated Material". En Extracellular Matrix Biomineralization of Dental Tissue Structures, 243–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76283-4_9.
Texto completoLiu, Junjun y Shangfeng Liu. "Stem Cells from Human Dental Tissue for Regenerative Medicine". En Stem Cells in Toxicology and Medicine, 481–501. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119135449.ch24.
Texto completoSui, Tan y Alexander M. Korsunsky. "Hierarchical Modeling of Elastic Behavior of Human Dental Tissue Based on Synchrotron Diff raction Characterization". En Advanced Healthcare Materials, 237–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118774205.ch7.
Texto completoAwasthi, Maj. "Tissues in Human Body". En Manual for Dental Hygienist, 3. Jaypee Brothers Medical Publishers (P) Ltd., 2018. http://dx.doi.org/10.5005/jp/books/14199_2.
Texto completoMustafa, Muhammad, Anwar Latif y Majid Jehangir. "Laser-Induced Breakdown Spectroscopy and Microscopy Study of Human Dental Tissues". En Electron Microscopy. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105054.
Texto completoAnand, Mahindra. "Chapter-03 Tissues". En Anand�s Human Anatomy for Dental Students, 19–26. Jaypee Brothers Medical Publishers (P) Ltd., 2012. http://dx.doi.org/10.5005/jp/books/11718_3.
Texto completoRamasamy, MV. "Microscopic Study of Cells and Tissues". En Human Anatomy for Dental Students, 555. Jaypee Brothers Medical Publishers (P) Ltd., 2010. http://dx.doi.org/10.5005/jp/books/11423_45.
Texto completoAswini, Y. B., Vikrant Mohanty y Kavita Rijhwani. "Fluoride and Other Trace Elements in Dental Hard Tissue". En Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102043.
Texto completoActas de conferencias sobre el tema "Human dental tissues"
Jelínková, H., K. Hamal, V. Kubeček, T. Dostálová, O. Krejsa, J. Kubelka, Ji Kvapil y S. Procházka. "Irradiation of human dental tissues using five laser wavelengths". En The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf23.
Texto completoMurgo, Dírian O. A., Blanche Cerruti, Marcela L. Redígolo y Maria C. Chavantes. "Effects of a superpulsed CO2 laser on human teeth". En European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4433_103.
Texto completoSivakumar, M., V. Oliveira, S. Eugénio y R. Vilar. "KrF excimer laser processing of human dental hard tissues". En ICALEO® 2006: 25th International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2006. http://dx.doi.org/10.2351/1.5060894.
Texto completoRego Filho, Francisco de Assis, Maristela Dutra-Corrêa, Gustavo Nicolodelli, Vanderlei Salvador Bagnato y Maria Tereza de Araujo. "Bovine Versus Human Dental Hard Tissues Under Ultrashort Laser Ablation: Morphological and Physical Aspects". En Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/laop.2010.tue3.
Texto completoDostalova, Tatjana, Otakar Krejsa, Helena Jelinkova y Vaclav Kubecek. "Irradiation of human dental tissues with different laser wavelengths: efficiency of water absorption and energy/pulse parameters". En OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, editado por Dov Gal, Stephen J. O'Brien, C. T. Vangsness, Joel M. White y Harvey A. Wigdor. SPIE, 1993. http://dx.doi.org/10.1117/12.148314.
Texto completoFahey, Molly E., Megan K. Jaunich, Ashim Dutta, Darrell B. Tata, Ronald W. Waynant, H. Lawrence Mason y Kunal Mitra. "Non-Thermal Dental Ablation Using Ultra-Short Pulsed Near Infrared Laser". En ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176403.
Texto completoChun, Keyoung Jin, Hyun Ho Choi y Jong Yeop Lee. "A Study of the Mechanical Role of Enamel and Dentin in Human Teeth". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86831.
Texto completoGaboutchian, Armen Vardgesovich, Vladimir Alexandrovich Knyaz, Sergey Vladimirovich Vasilyev, Anatoly Alexandrovich Maximov, Dmitri Vyacheslavovich Korost, Nikita Valerievich Stepanov, Gohar Razmikovna Petrosyan y Samvel Vladislavovich Apresyan. "Digital Analysis and Processing of 3D Reconstructions of Human Canine Teeth". En 32nd International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/graphicon-2022-657-667.
Texto completoLing-Ling, Cui. "Dental Tissue Engineering of EMPs on Human Dental Pulp Stem Cells". En 2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2016. http://dx.doi.org/10.1109/icmtma.2016.53.
Texto completoLing-Ling, Cui. "Dental Tissue Engineering on Human Dental Pulp Stem Cells Based on Tooth Development". En 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2017. http://dx.doi.org/10.1109/icmtma.2017.0117.
Texto completo