Siga este enlace para ver otros tipos de publicaciones sobre el tema: Human cell types.

Artículos de revistas sobre el tema "Human cell types"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Human cell types".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Liu, Zedao y Zemin Zhang. "Mapping cell types across human tissues". Science 376, n.º 6594 (13 de mayo de 2022): 695–96. http://dx.doi.org/10.1126/science.abq2116.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Grünert, Ulrike y Paul R. Martin. "Cell types and cell circuits in human and non-human primate retina". Progress in Retinal and Eye Research 78 (septiembre de 2020): 100844. http://dx.doi.org/10.1016/j.preteyeres.2020.100844.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bernstein, Matthew N. y Colin N. Dewey. "Annotating cell types in human single-cell RNA-seq data with CellO". STAR Protocols 2, n.º 3 (septiembre de 2021): 100705. http://dx.doi.org/10.1016/j.xpro.2021.100705.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Canals, Isaac, Ella Quist y Henrik Ahlenius. "Transcription Factor-Based Strategies to Generate Neural Cell Types from Human Pluripotent Stem Cells". Cellular Reprogramming 23, n.º 4 (1 de agosto de 2021): 206–20. http://dx.doi.org/10.1089/cell.2021.0045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kenney, M. Christina, Marilyn Chwa, Brian Lin, Gang-Hua Huang, Alexander V. Ljubimov y Donald J. Brown. "Identification of Cell Types in Human Diseased Corneas". Cornea 20, n.º 3 (abril de 2001): 309–16. http://dx.doi.org/10.1097/00003226-200104000-00014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Butterworth, R. J., W. Jones-Williams y L. E. Hughes. "Quantification of cell types in human granulation tissue". Journal of Wound Care 1, n.º 4 (2 de noviembre de 1992): 32–33. http://dx.doi.org/10.12968/jowc.1992.1.4.32.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Neumann, V., F. Siegemund y B. Bae�ler. "Electrically induced fusion of different human cell types". Journal of Neurology 233, n.º 3 (junio de 1986): 153–56. http://dx.doi.org/10.1007/bf00314422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jabari, Samir, Falk Schrödl, Alexandra Kaser-Eichberger, Barbara Kofler y Axel Brehmer. "Alarin in different human intestinal epithelial cell types". Histochemistry and Cell Biology 151, n.º 6 (5 de enero de 2019): 513–20. http://dx.doi.org/10.1007/s00418-018-1763-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hermann, Andreas, Martina Maisel, Stefan Liebau, Manfred Gerlach, Alexander Kleger, Johannes Schwarz, Kwang-Soo Kim, Gregor Antoniadis, Holger Lerche y Alexander Storch. "Mesodermal cell types induce neurogenesis from adult human hippocampal progenitor cells". Journal of Neurochemistry 98, n.º 2 (julio de 2006): 629–40. http://dx.doi.org/10.1111/j.1471-4159.2006.03916.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Trounson, Alan. "Human embryonic stem cells: mother of all cell and tissue types". Reproductive BioMedicine Online 4 (enero de 2002): 58–63. http://dx.doi.org/10.1016/s1472-6483(12)60013-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Guettier-Sigrist, Séverine, Gilliane Coupin, Jean-Marie Warter y Philippe Poindron. "Cell Types Required to Efficiently Innervate Human Muscle Cells in Vitro". Experimental Cell Research 259, n.º 1 (agosto de 2000): 204–12. http://dx.doi.org/10.1006/excr.2000.4968.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Gillooly, James F., Andrew Hein y Rachel Damiani. "Nuclear DNA Content Varies with Cell Size across Human Cell Types". Cold Spring Harbor Perspectives in Biology 7, n.º 7 (julio de 2015): a019091. http://dx.doi.org/10.1101/cshperspect.a019091.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Zhang, Yu, Lin An, Feng Yue y Ross C. Hardison. "Jointly characterizing epigenetic dynamics across multiple human cell types". Nucleic Acids Research 44, n.º 14 (19 de abril de 2016): 6721–31. http://dx.doi.org/10.1093/nar/gkw278.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lujan, Ernesto y Marius Wernig. "An indirect approach to generating specific human cell types". Nature Methods 10, n.º 1 (enero de 2013): 44–45. http://dx.doi.org/10.1038/nmeth.2325.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Horvath, Steve. "DNA methylation age of human tissues and cell types". Genome Biology 14, n.º 10 (2013): R115. http://dx.doi.org/10.1186/gb-2013-14-10-r115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Oyolu, Chuba, Fouad Zakharia y Julie Baker. "Distinguishing Human Cell Types Based On Housekeeping Gene Signatures". STEM CELLS 30, n.º 3 (14 de febrero de 2012): 580–84. http://dx.doi.org/10.1002/stem.1009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Li, Jin, Johanna Klughammer, Matthias Farlik, Thomas Penz, Andreas Spittler, Charlotte Barbieux, Ekaterine Berishvili, Christoph Bock y Stefan Kubicek. "Single‐cell transcriptomes reveal characteristic features of human pancreatic islet cell types". EMBO reports 17, n.º 2 (21 de diciembre de 2015): 178–87. http://dx.doi.org/10.15252/embr.201540946.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Goldring, S. R., M. S. Roelke, K. K. Petrison y A. K. Bhan. "Human giant cell tumors of bone identification and characterization of cell types." Journal of Clinical Investigation 79, n.º 2 (1 de febrero de 1987): 483–91. http://dx.doi.org/10.1172/jci112838.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Latroche, Claire, Michèle Weiss-Gayet, Cyril Gitiaux y Bénédicte Chazaud. "Cell sorting of various cell types from mouse and human skeletal muscle". Methods 134-135 (febrero de 2018): 50–55. http://dx.doi.org/10.1016/j.ymeth.2017.12.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Panina, Yulia, Peter Karagiannis, Andreas Kurtz, Glyn N. Stacey y Wataru Fujibuchi. "Human Cell Atlas and cell-type authentication for regenerative medicine". Experimental & Molecular Medicine 52, n.º 9 (septiembre de 2020): 1443–51. http://dx.doi.org/10.1038/s12276-020-0421-1.

Texto completo
Resumen
Abstract In modern biology, the correct identification of cell types is required for the developmental study of tissues and organs and the production of functional cells for cell therapies and disease modeling. For decades, cell types have been defined on the basis of morphological and physiological markers and, more recently, immunological markers and molecular properties. Recent advances in single-cell RNA sequencing have opened new doors for the characterization of cells at the individual and spatiotemporal levels on the basis of their RNA profiles, vastly transforming our understanding of cell types. The objective of this review is to survey the current progress in the field of cell-type identification, starting with the Human Cell Atlas project, which aims to sequence every cell in the human body, to molecular marker databases for individual cell types and other sources that address cell-type identification for regenerative medicine based on cell data guidelines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Qi, Furong, Shen Qian, Shuye Zhang y Zheng Zhang. "Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses". Biochemical and Biophysical Research Communications 526, n.º 1 (mayo de 2020): 135–40. http://dx.doi.org/10.1016/j.bbrc.2020.03.044.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Fabian, I., D. Douer, L. Levitt, Y. Kletter y PL Greenberg. "Human spleen cell generation of factors stimulating human pluripotent stem cell, erythroid, and myeloid progenitor cell growth". Blood 65, n.º 4 (1 de abril de 1985): 990–96. http://dx.doi.org/10.1182/blood.v65.4.990.990.

Texto completo
Resumen
Abstract Mitogen-stimulated murine spleen cells produce humoral substances capable of supporting murine hematopoiesis and pluripotent stem cell proliferation in vitro. Thus, we evaluated conditioned media generated by human spleen cells (SCM) in the presence or absence of mitogens for factors stimulatory for human pluripotent (CFU-GEMM), erythroid (BFU- E), and myeloid (CFU-GM) precursors. Two and one half percent to 10% SCM stimulated proliferation of all three types of precursor cells from nonadherent buoyant human marrow target cells. Mitogen-stimulated SCM augmented CFU-GM (175% to 225%), whereas CFU-GEMM and BFU-E growth was essentially unchanged. Cell separation procedures used to determine which cells provided these microenvironmental stimuli indicated that nonadherent mononuclear spleen cells provided the bulk of the CSF-GM, whereas adherent cells (95% nonspecific esterase + monocyte- macrophages) and nonadherent cells provided similar proportions of CSF- mix and erythroid burst-promoting activity (BPA). The nonadherent cells generating high levels of CSF-mix, BPA, and CSF-GM were predominantly Leu-1-negative, ie, non-T, cells. In the presence or absence of mitogens, SCM was a more potent source (1.3- to 3.8-fold) than peripheral leukocyte CM of the growth factors for the three progenitor cell types. Specific in situ cytochemical stains for analyzing morphology of myeloid colonies demonstrated that SCM stimulated the proliferation of the same types and proportions of colonies as human placental CM, suggesting that these CMs may contain similar CSF-GMs. These data show the contribution of spleen cell subsets to the generation of hematopoietic growth factors and the responsiveness of these cells to various mitogenic stimuli.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Fabian, I., D. Douer, L. Levitt, Y. Kletter y PL Greenberg. "Human spleen cell generation of factors stimulating human pluripotent stem cell, erythroid, and myeloid progenitor cell growth". Blood 65, n.º 4 (1 de abril de 1985): 990–96. http://dx.doi.org/10.1182/blood.v65.4.990.bloodjournal654990.

Texto completo
Resumen
Mitogen-stimulated murine spleen cells produce humoral substances capable of supporting murine hematopoiesis and pluripotent stem cell proliferation in vitro. Thus, we evaluated conditioned media generated by human spleen cells (SCM) in the presence or absence of mitogens for factors stimulatory for human pluripotent (CFU-GEMM), erythroid (BFU- E), and myeloid (CFU-GM) precursors. Two and one half percent to 10% SCM stimulated proliferation of all three types of precursor cells from nonadherent buoyant human marrow target cells. Mitogen-stimulated SCM augmented CFU-GM (175% to 225%), whereas CFU-GEMM and BFU-E growth was essentially unchanged. Cell separation procedures used to determine which cells provided these microenvironmental stimuli indicated that nonadherent mononuclear spleen cells provided the bulk of the CSF-GM, whereas adherent cells (95% nonspecific esterase + monocyte- macrophages) and nonadherent cells provided similar proportions of CSF- mix and erythroid burst-promoting activity (BPA). The nonadherent cells generating high levels of CSF-mix, BPA, and CSF-GM were predominantly Leu-1-negative, ie, non-T, cells. In the presence or absence of mitogens, SCM was a more potent source (1.3- to 3.8-fold) than peripheral leukocyte CM of the growth factors for the three progenitor cell types. Specific in situ cytochemical stains for analyzing morphology of myeloid colonies demonstrated that SCM stimulated the proliferation of the same types and proportions of colonies as human placental CM, suggesting that these CMs may contain similar CSF-GMs. These data show the contribution of spleen cell subsets to the generation of hematopoietic growth factors and the responsiveness of these cells to various mitogenic stimuli.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Kelly, Olivia G., Man Yin Chan, Laura A. Martinson, Kuniko Kadoya, Traci M. Ostertag, Kelly G. Ross, Mike Richardson et al. "Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells". Nature Biotechnology 29, n.º 8 (agosto de 2011): 750–56. http://dx.doi.org/10.1038/nbt.1931.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Bals, R., F. Gamarra, A. Kaps, S. Grundler, R. M. Huber y U. Welsch. "Secretory cell types and cell proliferation of human bronchial epithelial cells in an organ-culture system". Cell and Tissue Research 293, n.º 3 (26 de agosto de 1998): 573–77. http://dx.doi.org/10.1007/s004410051150.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Curtis, D. "Analysis of Cell Types Identifiable In Air-Dried Cell Preparations of Human Testis". Cell Proliferation 18, n.º 5 (septiembre de 1985): 543–50. http://dx.doi.org/10.1111/j.1365-2184.1985.tb00695.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Smits, Lisa M., Stefano Magni, Kaoru Kinugawa, Kamil Grzyb, Joachim Luginbühl, Sonia Sabate-Soler, Silvia Bolognin et al. "Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids". Cell and Tissue Research 382, n.º 3 (31 de julio de 2020): 463–76. http://dx.doi.org/10.1007/s00441-020-03249-y.

Texto completo
Resumen
AbstractHuman stem cell-derived organoids have great potential for modelling physiological and pathological processes. They recapitulate in vitro the organization and function of a respective organ or part of an organ. Human midbrain organoids (hMOs) have been described to contain midbrain-specific dopaminergic neurons that release the neurotransmitter dopamine. However, the human midbrain contains also additional neuronal cell types, which are functionally interacting with each other. Here, we analysed hMOs at high-resolution by means of single-cell RNA sequencing (scRNA-seq), imaging and electrophysiology to unravel cell heterogeneity. Our findings demonstrate that hMOs show essential neuronal functional properties as spontaneous electrophysiological activity of different neuronal subtypes, including dopaminergic, GABAergic, glutamatergic and serotonergic neurons. Recapitulating these in vivo features makes hMOs an excellent tool for in vitro disease phenotyping and drug discovery.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Cowan, Cameron S., Magdalena Renner, Martina De Gennaro, Brigitte Gross-Scherf, David Goldblum, Yanyan Hou, Martin Munz et al. "Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution". Cell 182, n.º 6 (septiembre de 2020): 1623–40. http://dx.doi.org/10.1016/j.cell.2020.08.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Engle, Sandra J. y Fabien Vincent. "Small Molecule Screening in Human Induced Pluripotent Stem Cell-derived Terminal Cell Types". Journal of Biological Chemistry 289, n.º 8 (20 de diciembre de 2013): 4562–70. http://dx.doi.org/10.1074/jbc.r113.529156.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kreuter, A., T. Gambichler, H. Pfister y U. Wieland. "Diversity of human papillomavirus types in periungual squamous cell carcinoma". British Journal of Dermatology 161, n.º 6 (diciembre de 2009): 1262–69. http://dx.doi.org/10.1111/j.1365-2133.2009.09343.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Zhang, Shihua, Dechao Tian, Ngoc Hieu Tran, Kwok Pui Choi y Louxin Zhang. "Profiling the transcription factor regulatory networks of human cell types". Nucleic Acids Research 42, n.º 20 (9 de octubre de 2014): 12380–87. http://dx.doi.org/10.1093/nar/gku923.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Das, Chandra M., Frederick Becker, Suzanne Vernon, Jamileh Noshari, Celine Joyce y Peter R. C. Gascoyne. "Dielectrophoretic Segregation of Different Human Cell Types on Microscope Slides". Analytical Chemistry 77, n.º 9 (mayo de 2005): 2708–19. http://dx.doi.org/10.1021/ac048196z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Keefe, Matthew G. y Tomasz J. Nowakowski. "A recipe book for cell types in the human brain". Nature 573, n.º 7772 (21 de agosto de 2019): 36–37. http://dx.doi.org/10.1038/d41586-019-02343-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Nakagawa, F., B. A. Schulte, M. A. Sens, N. Kochibe y S. S. Spicer. "Lectin cytochemistry of cell types in human and canine pituitary". Histochemistry 85, n.º 1 (1986): 57–66. http://dx.doi.org/10.1007/bf00508654.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Muller, D., J. P. Fricker, R. Millon-Collard, J. Abecassis, J. Pusel, M. Eber y G. Methlin. "Characterization of cell types in human breast tumor primary cultures". Biology of the Cell 61, n.º 1-2 (1987): 91–99. http://dx.doi.org/10.1111/j.1768-322x.1987.tb00574.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Reddy, M. M. y P. M. Quinton. "Electrophysiologically distinct cell types in human sweat gland secretory coil". American Journal of Physiology-Cell Physiology 262, n.º 2 (1 de febrero de 1992): C287—C292. http://dx.doi.org/10.1152/ajpcell.1992.262.2.c287.

Texto completo
Resumen
The human sweat gland secretory coil consists of three histologically distinct cell types: myoepithelial (ME), light (or clear), and dark cells. The electrophysiological properties of all these cells are poorly defined. Employing electrophysiological techniques, we report distinct pharmacological responses of three different cell types from freshly isolated human sweat gland secretory coil. The superficial ME cells are characterized by 1) spontaneous depolarizing spikes (2 to 50 mV), 2) high cell membrane potentials [Vm = -68.6 +/- 3.9 (SE) mV; n = 21], 3) a K(+)-selective cell membrane (slope response = 54.2 +/- 6.7 mV per decade K+ concentration; n = 4), 4) depolarizing responses to cholinergic agonist mecholyl (delta Vm = 29.1 +/- 3.1 mV, n = 21), and 5) insensitivity to beta-adrenergic stimulation (n = 12). Two other types of cells, presumably secretory, were also observed. We arbitrarily labeled these cells as beta-adrenergic sensitive (beta-S) and beta-adrenergic insensitive (beta-I) cells based on their respective sensitivity to isoproterenol (IPR), a beta-adrenomimetic. Properties of the beta-S cells include 1) relatively higher basolateral membrane potentials (Vm = -57.3 +/- 3.1 mV; n = 13), 2) depolarizing responses to IPR (delta Vm = 16.8 +/- 2.6 mV; n = 9) inhibitable by the beta-adrenergic antagonist propranolol, and 3) hyperpolarizing responses to mecholyl (delta Vm = -21.8 +/- 2.0 mV; n = 13). The beta-I cells are characterized by 1) low basolateral membrane potentials (Vm = -23.6 +/- 2.1 mV; n = 16), 2) insensitivity to beta-adrenergic stimulation, and 3) hyperpolarizating responses to mecholyl (delta Vm = -16.1 +/- 2.1 mV; n = 16).
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Dorrell, C., J. Schug, C. F. Lin, P. S. Canaday, A. J. Fox, O. Smirnova, R. Bonnah et al. "Erratum to: Transcriptomes of the major human pancreatic cell types". Diabetologia 56, n.º 5 (14 de marzo de 2013): 1192. http://dx.doi.org/10.1007/s00125-013-2886-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Sarafian, Theodore A., M. Anthony Verity, Harry V. Vinters, Charles C. Y. Shih, Liangru Shi, Xiang Dong Ji, Lingpu Dong y Hungyi Shau. "Differential expression of peroxiredoxin subtypes in human brain cell types". Journal of Neuroscience Research 56, n.º 2 (15 de abril de 1999): 206–12. http://dx.doi.org/10.1002/(sici)1097-4547(19990415)56:2<206::aid-jnr10>3.0.co;2-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Sarafian, Theodore A., M. Anthony Verity, Harry V. Vinters, Charles C. Y. Shih, Liangru Shi, Xiang Dong Ji, Lingpu Dong y Hungyi Shau. "Differential expression of peroxiredoxin subtypes in human brain cell types". Journal of Neuroscience Research 56, n.º 2 (15 de abril de 1999): 206–12. http://dx.doi.org/10.1002/(sici)1097-4547(19990415)56:2<206::aid-jnr1>3.0.co;2-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Del Rosso, J. Q. y G. K. Kim. "Diversity of human papillomavirus types in periungual squamous cell carcinoma". Yearbook of Dermatology and Dermatologic Surgery 2011 (enero de 2011): 171–73. http://dx.doi.org/10.1016/s0093-3619(10)79739-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Ibanez, Marta, Francisco J. Valderrama-Canales, Eva Maranillo, Teresa Vazquez, Arán Pascual-Font, Stephen McHanwell y Jose Sanudo. "Human laryngeal ganglia contain both sympathetic and parasympathetic cell types". Clinical Anatomy 23, n.º 6 (20 de agosto de 2010): 673–82. http://dx.doi.org/10.1002/ca.20956.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Minami, Elina, Michael A. Laflamme, Jeffrey E. Saffitz y Charles E. Murry. "Extracardiac Progenitor Cells Repopulate Most Major Cell Types in the Transplanted Human Heart". Circulation 112, n.º 19 (8 de noviembre de 2005): 2951–58. http://dx.doi.org/10.1161/circulationaha.105.576017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Grueneberg, D. A., S. Degot, J. Pearlberg, W. Li, J. E. Davies, A. Baldwin, W. Endege et al. "Kinase requirements in human cells: I. Comparing kinase requirements across various cell types". Proceedings of the National Academy of Sciences 105, n.º 43 (23 de octubre de 2008): 16472–77. http://dx.doi.org/10.1073/pnas.0808019105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Cao, Junyue, Diana R. O’Day, Hannah A. Pliner, Paul D. Kingsley, Mei Deng, Riza M. Daza, Michael A. Zager et al. "A human cell atlas of fetal gene expression". Science 370, n.º 6518 (12 de noviembre de 2020): eaba7721. http://dx.doi.org/10.1126/science.aba7721.

Texto completo
Resumen
The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Domcke, Silvia, Andrew J. Hill, Riza M. Daza, Junyue Cao, Diana R. O’Day, Hannah A. Pliner, Kimberly A. Aldinger et al. "A human cell atlas of fetal chromatin accessibility". Science 370, n.º 6518 (12 de noviembre de 2020): eaba7612. http://dx.doi.org/10.1126/science.aba7612.

Texto completo
Resumen
The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type–specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type–specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kauvar, Lawrence M., Keyi Liu, Minha Park, Neal DeChene, Robert Stephenson, Edgar Tenorio, Stote L. Ellsworth et al. "A High-Affinity Native Human Antibody Neutralizes Human Cytomegalovirus Infection of Diverse Cell Types". Antimicrobial Agents and Chemotherapy 59, n.º 3 (22 de diciembre de 2014): 1558–68. http://dx.doi.org/10.1128/aac.04295-14.

Texto completo
Resumen
ABSTRACTHuman cytomegalovirus (HCMV) is the most common infection causing poor outcomes among transplant recipients. Maternal infection and transplacental transmission are major causes of permanent birth defects. Although no active vaccines to prevent HCMV infection have been approved, passive immunization with HCMV-specific immunoglobulin has shown promise in the treatment of both transplant and congenital indications. Antibodies targeting the viral glycoprotein B (gB) surface protein are known to neutralize HCMV infectivity, with high-affinity binding being a desirable trait, both to compete with low-affinity antibodies that promote the transmission of virus across the placenta and to displace nonneutralizing antibodies binding nearby epitopes. Using a miniaturized screening technology to characterize secreted IgG from single human B lymphocytes, 30 antibodies directed against gB were previously cloned. The most potent clone, TRL345, is described here. Its measured affinity was 1 pM for the highly conserved site I of the AD-2 epitope of gB. Strain-independent neutralization was confirmed for 15 primary HCMV clinical isolates. TRL345 prevented HCMV infection of placental fibroblasts, smooth muscle cells, endothelial cells, and epithelial cells, and it inhibited postinfection HCMV spread in epithelial cells. The potential utility for preventing congenital transmission is supported by the blockage of HCMV infection of placental cell types central to virus transmission to the fetus, including differentiating cytotrophoblasts, trophoblast progenitor cells, and placental fibroblasts. Further, TRL345 was effective at controlling anex vivoinfection of human placental anchoring villi. TRL345 has been utilized on a commercial scale and is a candidate for clinical evaluation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Prakash, Ravi, Santosh Kumar Yadav y Syed Shadab Raza. "STEM CELLS THERAPY IN HUMAN WELFARE AND DISEASE". Era's Journal of Medical Research 7, n.º 2 (diciembre de 2020): 229–34. http://dx.doi.org/10.24041/ejmr2020.39.

Texto completo
Resumen
The study Global Burden of Disease (GBD) drew international healthcare community's attention to the burden of neurological disorders and many other chronic conditions. This study highlighted that the burden of neurological disorders was seriously underrated by traditional epidemiological and health statistical methods that prefer only mortality rates but not disability rates. There has recently been a great deal of interest in stem cells and the nervous system, in terms of their potential for deciphering developmental issues as well as their therapeutic potential. With the advancement in cell culture, isolation techniques, and molecular analyses, various types of stem cells have now been broadly classified, isolated, and characterized from different parts of the body, even from brain and heart. The concept of stem cell-based therapy provided new hope for the treatment of neurological diseases. In this review we will discuss about ongoing stem cell therapy for neurodegenerative disease.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Chan, Wen-Hsiung, Hsiao-Yun Wu y Walter H. Chang. "Dosage effects of curcumin on cell death types in a human osteoblast cell line". Food and Chemical Toxicology 44, n.º 8 (agosto de 2006): 1362–71. http://dx.doi.org/10.1016/j.fct.2006.03.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Vijay, Jinchu, Marie-Frédérique Gauthier, Rebecca L. Biswell, Daniel A. Louiselle, Jeffrey J. Johnston, Warren A. Cheung, Bradley Belden et al. "Single-cell analysis of human adipose tissue identifies depot- and disease-specific cell types". Nature Metabolism 2, n.º 1 (23 de diciembre de 2019): 97–109. http://dx.doi.org/10.1038/s42255-019-0152-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Albright, Craig D., Kevin P. Keenan, Kristin L. Colombo y James H. Resau. "Morphologic identification of epithelial cell types of the human tracheo-bronchus in cell culture". Journal of Tissue Culture Methods 13, n.º 1 (marzo de 1991): 5–11. http://dx.doi.org/10.1007/bf02388197.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía