Literatura académica sobre el tema "HSP27 extracellulaire"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "HSP27 extracellulaire".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "HSP27 extracellulaire"
Gabai, Vladimir L. y Michael Y. Sherman. "Invited Review: Interplay between molecular chaperones and signaling pathways in survival of heat shock". Journal of Applied Physiology 92, n.º 4 (1 de abril de 2002): 1743–48. http://dx.doi.org/10.1152/japplphysiol.01101.2001.
Texto completoStope, Matthias B., Gerd Klinkmann, Karoline Diesing, Dominique Koensgen, Martin Burchardt y Alexander Mustea. "Heat Shock Protein HSP27 Secretion by Ovarian Cancer Cells Is Linked to Intracellular Expression Levels, Occurs Independently of the Endoplasmic Reticulum Pathway and HSP27’s Phosphorylation Status, and Is Mediated by Exosome Liberation". Disease Markers 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/1575374.
Texto completoWinter, Julia, Elke Hammer, Jacqueline Heger, Heinz-Peter Schultheiss, Ursula Rauch, Ulf Landmesser y Andrea Dörner. "Adenine Nucleotide Translocase 1 Expression Is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes". Cells 8, n.º 12 (6 de diciembre de 2019): 1588. http://dx.doi.org/10.3390/cells8121588.
Texto completoSinger, Debora, Can Pascal Wulff, Matthias B. Stope y Sander Bekeschus. "Extracellular Heat Shock Protein 27 Is Released by Plasma-Treated Ovarian Cancer Cells and Affects THP-1 Monocyte Activity". Plasma 5, n.º 4 (6 de diciembre de 2022): 569–78. http://dx.doi.org/10.3390/plasma5040040.
Texto completoGrotegut, Pia, Sandra Kuehn, H. Burkhard Dick y Stephanie C. Joachim. "Destructive Effect of Intravitreal Heat Shock Protein 27 Application on Retinal Ganglion Cells and Neurofilament". International Journal of Molecular Sciences 21, n.º 2 (15 de enero de 2020): 549. http://dx.doi.org/10.3390/ijms21020549.
Texto completoJohnson, John D., Jay Campisi, Craig M. Sharkey, Sarah L. Kennedy, Molly Nickerson y Monika Fleshner. "Adrenergic receptors mediate stress-induced elevations in extracellular Hsp72". Journal of Applied Physiology 99, n.º 5 (noviembre de 2005): 1789–95. http://dx.doi.org/10.1152/japplphysiol.00390.2005.
Texto completoGrotegut, Pia, Philipp Johannes Hoerdemann, Sabrina Reinehr, Nupur Gupta, H. Burkhard Dick y Stephanie C. Joachim. "Heat Shock Protein 27 Injection Leads to Caspase Activation in the Visual Pathway and Retinal T-Cell Response". International Journal of Molecular Sciences 22, n.º 2 (6 de enero de 2021): 513. http://dx.doi.org/10.3390/ijms22020513.
Texto completoBitar, K. N., A. Ibitayo y S. B. Patil. "HSP27 modulates agonist-induced association of translocated RhoA and PKC-α in muscle cells of the colon". Journal of Applied Physiology 92, n.º 1 (1 de enero de 2002): 41–49. http://dx.doi.org/10.1152/jappl.2002.92.1.41.
Texto completoSevin, Margaux, Nicolas Pernet, Franck Vitte, Selim Ramla, Paul Sagot, Laurent Martin, Jean Luc Villeval et al. "HSP27: A Therapeutic Target in Myelofibrosis". Blood 128, n.º 22 (2 de diciembre de 2016): 1963. http://dx.doi.org/10.1182/blood.v128.22.1963.1963.
Texto completoHatakeyama, Daijiro, Osamu Kozawa, Masayuki Niwa, Hiroyuki Matsuno, Kanefusa Kato, Norichika Tatematsu, Toshiyuki Shibata y Toshihiko Uematsu. "Inhibition by adenylyl cyclase-cAMP system of ET-1-induced HSP27 in osteoblasts". American Journal of Physiology-Endocrinology and Metabolism 281, n.º 6 (1 de diciembre de 2001): E1260—E1266. http://dx.doi.org/10.1152/ajpendo.2001.281.6.e1260.
Texto completoTesis sobre el tema "HSP27 extracellulaire"
Pommerolle, Lenny. "Identification de nouvelles cibles thérapeutiques dans la fibrose pulmonaire idiopathique : Etude du récepteur CD206 et des protéines de choc thermique HSP27 et αB-crystallin". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2021. https://nuxeo.u-bourgogne.fr/nuxeo/site/esupversions/951bd793-5b06-4843-81c4-0d887829fdba.
Texto completoIdiopathic pulmonary fibrosis (IPF) is a rare, chronic and progressive parenchymal lung disease of unknown origin, the most abundant form of adult interstitial lung diseases (ILD). It is characterized by myofibroblast proliferation and an increase in extracellular matrix production, mainly collagen into pulmonary parenchyma that dramatically and irreversibly impaired respiratory function. IPF is a fatal disease, with a median survival time around 5 years after diagnosis, and which occurs mainly after 60 years. Except pirfenidone and nintedanib that may slightly delay clinical worsening, no pharmacologic treatment is currently available. It becomes crucial that laboratories continue their work exploring new pathways of interest in IPF and propose new and efficient therapeutic targets/drugs for fibrosis.TGF-b1 is a key cytokine to orchestrate fibrosis by favoring myofibroblast proliferation and differentiation. This phenomenon is regulated partially by immune cells including macrophages. Heat shock proteins (HSP), notably HSP27 and aB-crystallin, are other mediators known to be involved in fibrogenesis. My thesis work consisted in 1) studying the interest of macrophagic receptor CD206 as diagnosis marker and target to limit fibrosis progression, 2) investigating the role of extracellular HSP27 in the development of lung fibrosis, 3) testing the effect of an antisens oligonucleotide against aB-crystallin to limit efficiently disease progression.Our work shows the increase of CD206 expression in fibrotic conditions in human and mouse macrophages. The use of radiotracer detecting specifically CD206, 99mTc-Tilmanocept, is able to quantify it. Interestingly, radioactive signal is decreased by nintedanib treatment as well as by M2 macrophages inhibitor, tofacitinib, in mice treated by bleomycin. In addition, tofacitinib treatment is also able to limit the development of lung fibrosis by limiting macrophage infiltration and CD206 expression. This work suggests to use CD206 to IPF diagnosis and the interest to develop CD206 inhibitors to treat lung fibrosis. In the second part, my work highlights HSP27 secretion by pulmonary cells in pro-fibrotic conditions and the colocalisation of this protein with TLR2 and 4. In consequence of the increase in extracellular HSP27 concentration, we observe that myofibroblastic transition of pulmonary cells, induced by TGF-b1 treatment, is potentiated. Furthermore, HSP27 secretion by lung cells also induces macrophage activation and their expression of pro-fibrotic cytokines. In addition, we show that its depletion limits myofibroblast transition induced by TGF-b1. Ours results assed that extracellular HSP27 is a pro-fibrotic intercellular mediator, which inhibition may be useful to reduce pulmonary fibrosis progression. In the last part, we compare a lipid modified antisens oligonucleotide against aB-crystallin with the first generation one. Unfortunately, our results do not show a real interest of this compound compared to the first generation one for limiting pulmonary fibrotic processes.To conclude, my thesis works suggest new diagnosis and treatment options for pulmonary fibrosis by inhibiting macrophagic CD206 receptor and extracellular form of HSP27
Williams, Helen. "Interactions between extracellular Hsp72 and blood cells". Thesis, University of Chester, 2010. http://hdl.handle.net/10034/277691.
Texto completoTsai, Tsen-Ni y 蔡甄妮. "The role of extracellular Hsp72 during sepsis". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/g5c8ft.
Texto completo高雄醫學大學
醫學研究所博士班
103
Background: Sepsis, the leading cause of death in intensive care units, annually affects more than 500,000 patients in the United States; despite advances in treatment and supportive care, the mortality rate remains higher than 20%. Our previous study revealed that heat shock reduces the sepsis-related mortality rate by increasing the expression of heat shock protein 72 (Hsp72, also known as Hp70). Hsp72, a molecular chaperone intracellularly induced by stress, exhibits antiinflammatory and antiapoptotic effects. Hsp72 protects cells and is released into the circulation by various cells in response to stress and toxic treatments. However, the precise role of extracellular Hsp72 (eHsp72) during sepsis remains unclear . The present study was divided into two parts; the first part was conducted to clarify the effect of eHsp72 on the sepsis-related survival rate and to determine the underlying factors. The second part was conducted to assess the hypothesis that eHsp72 is involved in reversing sepsis-induced liver dysfunction. Methods: Part 1: Sepsis was induced by cecal ligation and puncture (CLP). Changes in serum levels of Hsp72 and cytokines were determined during sepsis, and the results were correlated with the survival rate. The effects of heat pretreatment on Hsp72 expression in septic rat leukocytes and those of septic rat serum, lipopolysaccharide (LPS), and certain cytokines on Hsp72 expression in macrophage NR8383 cells were 7 determined. Part II: Liver function was determined on the basis of changes in the enzymatic activities of serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT). Apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of Bcl-2, Bax, cleaved caspase-3 and -9, and cleaved poly(ADP ribose) polymerase (PARP) in liver tissue was analyzed using W estern blotting. Results: Part 1: Circulating Hsp72 levels increased during sepsis (0, 5.5, 6.5, 10, and 6.5 ng/mL at 0, 3, 6, 9, and 18 h after CLP), positively correlating with survival rates. LPS triggered Hsp72 expression in heat-pretreated rats. Heat pretreatment also increased Hsp72 expression in nonseptic (535%, p < 0.01) and septic (116%, p < 0.01) rat leukocytes. Furthermore, incubating the serum of septic rats with NR8383 cells increased eHsp72 levels in a cultured medium. Cytokine profiling revealed that among the 19 cytokines screened, the levels of cytokine-induced neutrophil chemoattractant 3 (211.3%, p < 0.05), interleukin-10 (147%, p < 0.05), monocyte chemotactic protein 1 (MCP-1; 49.6%, p < 0.05), and tumor necrosis factor alpha (51.8%, p < 0.05) increased. MCP-1 and LPS released Hsp72 from NR8383 cells. Part II: The results revealed that GOT and GPT activities increased by 126% and 121%, respectively, during sepsis and returned to the control level following the administration of recombinant human Hsp72 (rhHsp72). During sepsis, apoptotic cells 8 in liver tissue were augmented (665.7%, p < 0.01); however, the effect was reversed on treatment with rhHsp72. Furthermore, during sepsis, Bcl-2/Bax protein expression in liver tissue was downregulated (&;#8722;26%; p < 0.01), and the downregulation was diminished after rhHsp72 treatment. Moreover, during sepsis, expression of cleaved capase-3, cleaved caspase-9, and PARP in liver tissue was upregulated by 40.9%, 103.3%, and 1106%, respectively, and the upregulation was reversed after treatment with rhHsp72. Conclusion: These results demonstrate that increases in levels of circulating Hsp72 improved the survival rate during sepsis. The increases in circulating Hsp72 may be mediated through MCP-1 and/or LPS. Moreover, during sepsis, eHsp72 restored liver function by ameliorating apoptosis through the mitochondria-initiated caspase pathway . Our findings provide a biochemical basis for the development of rhHsp72 as a therapeutic agent for sepsis management.
Capítulos de libros sobre el tema "HSP27 extracellulaire"
Fleshner, Monika, Thomas Maslanik y Lida A. Beninson. "In Vivo Tissue Source and Releasing Signal for Endogenous Extracellular Hsp72". En Heat Shock Proteins and Whole Body Physiology, 193–215. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3381-9_12.
Texto completoFLESHNER, MONIKA, CRAIG M. SHARKEY, MOLLY NICKERSON y JOHN D. JOHNSON. "Endogenous Extracellular Hsp72 Release Is an Adaptive Feature of the Acute Stress Response". En Psychoneuroimmunology, 1013–34. Elsevier, 2007. http://dx.doi.org/10.1016/b978-012088576-3/50055-1.
Texto completoActas de conferencias sobre el tema "HSP27 extracellulaire"
Pommerolle, Lenny, Olivier Burgy, Lucile Dondaine, Pierre-Marie Boutanquoi, Guillaume Beltramo, Julie Tanguy, Sabrina Loriod, Carmen Garrido, Philippe Bonniaud y Françoise Goirand. "Role of Extracellular HSP27 in pulmonary fibrosis". En ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.601.
Texto completoPommerolle, Lenny, Pierre-Marie Boutanquoi, Florent Thevenet, Lucile Dondaine, Maximilien Spanjaard, Guillaume Beltramo, Carmen Garrido, Philippe Bonniaud y Françoise Goirand. "Role of extracellular HSP27 in idiopathic pulmonary fibrosis (IPF)". En Abstracts from the 17th ERS Lung Science Conference: ‘Mechanisms of Acute Exacerbation of Respiratory Disease’. European Respiratory Society, 2019. http://dx.doi.org/10.1183/23120541.lungscienceconference-2019.pp108.
Texto completo