Literatura académica sobre el tema "Hotspot selection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hotspot selection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hotspot selection"
Luo, Pan. "A Deep Neural Network-Based Approach to Media Hotspot Discovery". Advances in Multimedia 2023 (21 de febrero de 2023): 1–9. http://dx.doi.org/10.1155/2023/3438025.
Texto completoMishra, Ahan, Ke Chen, Subhadipto Poddar, Emmanuel Posadas, Anand Rangarajan y Sanjay Ranka. "Using Video Analytics to Improve Traffic Intersection Safety and Performance". Vehicles 4, n.º 4 (10 de noviembre de 2022): 1288–313. http://dx.doi.org/10.3390/vehicles4040068.
Texto completoLong, Z., N. Yang, Y. Huang, Y. Chao y L. Wan. "QUANTITATIVE EVALUATION METHOD OF ELEMENTS PRIORITY OF CARTOGRAPHIC GENERALIZATION BASED ON TAXI TRAJECTORY DATA". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W7 (12 de septiembre de 2017): 65–69. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w7-65-2017.
Texto completoKumar, Sushant, Declan Clarke y Mark B. Gerstein. "Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures". Proceedings of the National Academy of Sciences 116, n.º 38 (28 de agosto de 2019): 18962–70. http://dx.doi.org/10.1073/pnas.1901156116.
Texto completoArunachalam, Vanathi y Nagamalleswara Nallamothu. "Load Balancing in RPL to Avoid Hotspot Problem for Improving Data Aggregation in IoT". International Journal of Intelligent Engineering and Systems 14, n.º 1 (28 de febrero de 2021): 528–40. http://dx.doi.org/10.22266/ijies2021.0228.49.
Texto completoAutika, Yotta, Aras Mulyadi y Yusni Ikhwan Siregar. "Pemetaan Indek Kekeringan dan Sebaran Titik Hotspot Daerah Potensi Kebakaran Hutan dan Lahan di Propinsi Riau". Dinamika Lingkungan Indonesia 5, n.º 1 (28 de enero de 2018): 1. http://dx.doi.org/10.31258/dli.5.1.p.1-11.
Texto completoTuna, Musaffe, Zhenlin Ju, Kosuke Yoshihara, Christopher I. Amos, Janos L. Tanyi y Gordon B. Mills. "Clinical relevance of TP53 hotspot mutations in high-grade serous ovarian cancers". British Journal of Cancer 122, n.º 3 (29 de noviembre de 2019): 405–12. http://dx.doi.org/10.1038/s41416-019-0654-8.
Texto completoSukojo, Bangun Muljo y Diya Rochima Lisakiyanto. "Web-Based Geographic Information System Development of Hotspots Distribution for Monitoring Forest and Land Fires Using Leaflet JavaScript Library (Case Study: Ogan Komering Ilir Regency, South Sumatera)". IOP Conference Series: Earth and Environmental Science 936, n.º 1 (1 de diciembre de 2021): 012010. http://dx.doi.org/10.1088/1755-1315/936/1/012010.
Texto completoNirmalaDevi, K. y V. Murali Bhaskaran. "Rough Set and Entropy based Feature Selection for Online Forums Hotspot Detection". International Journal of Computer Applications 117, n.º 10 (20 de mayo de 2015): 37–41. http://dx.doi.org/10.5120/20593-3087.
Texto completoMoreno-García, Roberto A., Ricardo Zamora y Miguel A. Herrera. "Habitat selection of endemic birds in temperate forests in a biodiversity "Hotspot"". Forest Systems 23, n.º 2 (1 de agosto de 2014): 216. http://dx.doi.org/10.5424/fs/2014232-03700.
Texto completoTesis sobre el tema "Hotspot selection"
Zhu, Winstead Xingran. "Hotspot Detection for Automatic Podcast Trailer Generation". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444887.
Texto completoVANNUCCHI, VALENTINA. "Wave energy harvesting in the Mediterranean Sea". Doctoral thesis, 2013. http://hdl.handle.net/2158/797871.
Texto completoYuan, Haw y 袁顥. "Particle Swarm Optimization-based Hotspot Analysis and Impurity Function Band Prioritization Using Multiple Attribute Decision-Making Model for Band Selection of High Dimensional Data Sets". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/428q69.
Texto completo國立臺北科技大學
電機工程研究所
105
In recent years, the satellite technique has a tremendous progress. The images captured by satellites contain larger data and dimensions. To solve the problem caused by the huge datasets, selecting the representative bands to achieve the dimensionality reduction. Then it will prevent the Hughes Phenomena. Some scholars proposed many algorithms for band selection, but the effects of dimensionality reduction are not obvious. A researcher proposed combining particle swarm optimization with correlation coefficients matrix to cluster the highly correlated bands and to obtain the greedy modular eigenspaces. According to the analytic hierarchy process model to present and rate the eigenspaces. It can obtain excellent rate in both dimensionality reduction and accuracy. Therefore, this paper proposed a more advanced rating method called hotspot analysis. This method can calculate the weightings and analyze the correlation between each clustered blocks in each eigenspace. Finally, selecting the representative bands with higher weighting scores and achieving a better result of dimensionality reduction. In the result, this paper uses MASTER and NTC remote sensing images as the experimental datasets. To test the correlation and variation between dimensionality reduction and accuracy. Comparing the advanced method with the original method. In Au-Ku, the dimensionality reduction rate are both 90.91% but the original accuracy is 95.37% and the advanced method is 99.99%. In NTC, the dimensionality reduction rate are both 87.7% but the original accuracy is 95.22% and the advanced method is 96.48%. The result can show the advanced method has the better effects.
Ho, Li-June y 何麗君. "Selections and Analyses of Avian Biodiversity Hotspots in East Asia". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/90313394678593890477.
Texto completo國立臺灣大學
森林學研究所
93
The selections and analyses of biodiversity hotspot are critical for establishing protected areas. Using a 100×100 km grid system of bird breeding ranges in East Asia, I compared the spatial correlation of biodiversity hotspots selected by (1) total species richness, (2) limited-ranged species richness, (3) endangered species richness, and (4) complementary method. Furthermore, I examined the distribution of species richness of various avian orders and families and the correlation among species richness, genus richness, and family richness. I found that there were low spatial correlations among biodiversity hotspots selected by different methods. With same area, the hotspots selected by complementary method covered more species than other methods. There were high correlations among species richness, genus richness, and family richness. I conclude the hotspots of total species, limited-ranged species, and endangered species were not congruent with each other. In selecting protected areas, hotspots of limited-ranged species and endangered species should be given priorities and using complementary method could maximize the species covered by a given area and increase the efficiency of protected areas. Genus richness could be a good surrogate of species richness if obtaining species richness is difficult for field investigation.
Capítulos de libros sobre el tema "Hotspot selection"
Bhattacharjee, Shiladitya, Divya Midhun Chakkaravarthy, Midhun Chakkaravarthy y Lukman Bin Ab Rahim. "An Integrated Technique to Ensure Confidentiality and Integrity in Data Transmission Through the Strongest and Authentic Hotspot Selection Mechanism". En Data Management, Analytics and Innovation, 459–74. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9364-8_33.
Texto completoCrespo-Herrera, Leonardo A., José Crossa, Mateo Vargas y Hans-Joachim Braun. "Defining Target Wheat Breeding Environments". En Wheat Improvement, 31–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_3.
Texto completoReinhardt, Ilka, Felix Knauer, Micha Herdtfelder, Gesa Kluth y Petra Kaczensky. "Wie lassen sich Nutztierübergriffe durch Wölfe nachhaltig minimieren? – Eine Literaturübersicht mit Empfehlungen für Deutschland". En Evidenzbasiertes Wildtiermanagement, 231–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65745-4_9.
Texto completoEftelioglu, Emre, Shashi Shekhar y Xun Tang. "Crime Hotspot Detection". En Improving the Safety and Efficiency of Emergency Services, 209–38. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2535-7.ch010.
Texto completo"Hotspots, Cold Fact. Managing Migration by Selecting Migrants". En Migration on the Move, 152–71. Brill | Nijhoff, 2017. http://dx.doi.org/10.1163/9789004330467_009.
Texto completoHalsband, Claudia, Shane T. Ahyong, Angelika Brandt, Ksenia Kosobokova, Peter Ward, Will P. Goodall-Copestake y Enrique Macpherson. "Biogeography of the Oceans". En Evolution and Biogeography, 121–54. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190637842.003.0006.
Texto completoQuazi, Sameer, Tanya Golani y Arnaud Martino Capuzzo. "Germplasm Conservation". En Endangered Plants. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96184.
Texto completoArmesto, Juan J. y Mary T. K. Arroyo. "The Mediterranean Environment of Central Chile". En The Physical Geography of South America. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195313413.003.0019.
Texto completoActas de conferencias sobre el tema "Hotspot selection"
Mittal, Vandana, Sanjit Krishnan Kaul y Sumit Roy. "On optimal hotspot selection and offloading". En ICC 2016 - 2016 IEEE International Conference on Communications. IEEE, 2016. http://dx.doi.org/10.1109/icc.2016.7510806.
Texto completoCheng, Huang, Xin Fei, Azzedine Boukerche y Mohammed Almulla. "Hotspot discovery algorithms in coverage selection model over VANETs". En GLOBECOM 2014 - 2014 IEEE Global Communications Conference. IEEE, 2014. http://dx.doi.org/10.1109/glocom.2014.7036798.
Texto completoTakahashi, Hidekazu, Hiroki Ogura, Shimpei Sato, Atsushi Takahashi y Chikaaki Kodama. "A feature selection method for weak classifier based hotspot detection". En Design-Process-Technology Co-optimization for Manufacturability XIV, editado por Chi-Min Yuan y Ryoung-Han Kim. SPIE, 2020. http://dx.doi.org/10.1117/12.2559358.
Texto completoTabrizi, Haleh, Golnaz Farhadi y John M. Cioffi. "Tethering over TV White-Space: Dynamic Hotspot Selection and Resource Allocation". En 2013 IEEE 78th Vehicular Technology Conference (VTC Fall). IEEE, 2013. http://dx.doi.org/10.1109/vtcfall.2013.6692435.
Texto completoSu, Shi, Sofiane Tahir, Kassem Ghorayeb, Samat Ramatullayev, Xavier Garcia-Teijeiro, Assef Mohamad Hussein, Chakib Kada Kloucha y Hussein Mustapha. "Multidisciplinary Data Integration for Artificial-Intelligence-Assisted Well Placement and Trajectory Design Optimization Under Uncertainty". En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211367-ms.
Texto completoZhu, Kang, Qiang Dou, Aihua Shao, Peisi Chu, Yonghua Xiao y Yunfeng Peng. "An Energy-efficient routing Protocol Based on Hotspot-aware uneven clustering and Dynamic Path Selection". En 2013 22nd Wireless and Optical Communication Conference (WOCC 2013). IEEE, 2013. http://dx.doi.org/10.1109/wocc.2013.6676329.
Texto completoJusteau-Allaire, Dimitri, Philippe Vismara, Philippe Birnbaum y Xavier Lorca. "Systematic Conservation Planning for Sustainable Land-use Policies: A Constrained Partitioning Approach to Reserve Selection and Design." En Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/818.
Texto completoChang, Yang-Lang, Amare Anagaw Ayele, Min-Yu Huang, Haw Yuan, Lena Chang y Wen-Yen Chang. "Particle Swarm Optimization-Based Hotspot Analysis and Impurity Function Band Prioritization Using Multiple Attribute Decision-Making Model for Band Selection of Hyperspectral Images". En IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8900493.
Texto completoSingh, Gopal, Santiago Lentijo y Kalpathy Sundaram. "The Impact of the Converter on the Reliability of a Wind Turbine Generator". En ASME 2019 Power Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/power2019-1966.
Texto completoZhang, Li, Weimin Chen, Jianting Chen y Chuanming Zhou. "Verification and Validation of CFD Uncertainty Analysis Based on SST K-ω Model". En ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19093.
Texto completo