Literatura académica sobre el tema "Homolysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Homolysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Homolysis"
Zhang, Chen, Junxia Pi, Shu Chen, Ping Liu y Peipei Sun. "Construction of a 4H-pyrido[4,3,2-gh]phenanthridin-5(6H)-one skeleton via a catalyst-free radical cascade addition/cyclization using azo compounds as radical sources". Organic Chemistry Frontiers 5, n.º 5 (2018): 793–96. http://dx.doi.org/10.1039/c7qo00926g.
Texto completoShin, Jeongcheol, Jiseon Lee, Jong-Min Suh y Kiyoung Park. "Ligand-field transition-induced C–S bond formation from nickelacycles". Chemical Science 12, n.º 48 (2021): 15908–15. http://dx.doi.org/10.1039/d1sc05113j.
Texto completoQianzhu, Haocheng, Wenjuan Ji, Xinjian Ji, Leixia Chu, Chuchu Guo, Wei Lu, Wei Ding, Jiangtao Gao y Qi Zhang. "Reactivity of the nitrogen-centered tryptophanyl radical in the catalysis by the radical SAM enzyme NosL". Chemical Communications 53, n.º 2 (2017): 344–47. http://dx.doi.org/10.1039/c6cc08869d.
Texto completoIshihara, Koji y Thomas Wilson Swaddle. "The pressure dependence of rates of homolytic fission of metal–ligand bonds in aqueous solution". Canadian Journal of Chemistry 64, n.º 11 (1 de noviembre de 1986): 2168–70. http://dx.doi.org/10.1139/v86-356.
Texto completoYorimitsu, Hideki. "Homolytic substitution at phosphorus for C–P bond formation in organic synthesis". Beilstein Journal of Organic Chemistry 9 (28 de junio de 2013): 1269–77. http://dx.doi.org/10.3762/bjoc.9.143.
Texto completoCameron, Dale R., Alison M. P. Borrajo, Gregory R. J. Thatcher y Brian M. Bennett. "Organic nitrates, thionitrates, peroxynitrites, and nitric oxide: a molecular orbital study of the (X = O, S) rearrangement, a reaction of potential biological significance". Canadian Journal of Chemistry 73, n.º 10 (1 de octubre de 1995): 1627–38. http://dx.doi.org/10.1139/v95-202.
Texto completoEdeleva, Mariya, Gerard Audran, Sylvain Marque y Elena Bagryanskaya. "Smart Control of Nitroxide-Mediated Polymerization Initiators’ Reactivity by pH, Complexation with Metals, and Chemical Transformations". Materials 12, n.º 5 (26 de febrero de 2019): 688. http://dx.doi.org/10.3390/ma12050688.
Texto completoShu, Xing-Zhong y Xiaobo Pang. "Titanium: A Unique Metal for Radical Dehydroxylative Functionalization of Alcohols". Synlett 32, n.º 13 (4 de marzo de 2021): 1269–74. http://dx.doi.org/10.1055/a-1406-0484.
Texto completoKoppenol, Willem H. y Reinhard Kissner. "Can ONOOH Undergo Homolysis?" Chemical Research in Toxicology 11, n.º 2 (febrero de 1998): 87–90. http://dx.doi.org/10.1021/tx970200x.
Texto completoTurrà, Natascia, Ulrich Neuenschwander y Ive Hermans. "Molecule-Induced Peroxide Homolysis". ChemPhysChem 14, n.º 8 (4 de abril de 2013): 1666–69. http://dx.doi.org/10.1002/cphc.201300130.
Texto completoTesis sobre el tema "Homolysis"
Marquess, Daniel. "Studies on the insertion-homolysis mechanism for carbon-sulphur bond formation in penicillin biosynthesis". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306548.
Texto completoHelling, Christoph [Verfasser] y Stephan [Akademischer Betreuer] Schulz. "Pnictogen–Carbon Bond Homolysis : an approach to the synthesis of group 13 metal-substituted pnictanyl radicals / Christoph Helling ; Betreuer: Stephan Schulz". Duisburg, 2021. http://d-nb.info/123491123X/34.
Texto completoHavot, Jeffrey. "Synthèse et étude d'alcoxyamines inédites : de la théranostique à l'activation par résonnance plasmonique". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0080.
Texto completoAlkoxyamines are molecules well-known for their abilities to generate radicals from C-ON bond homolysis. This homolysis can be induced by various methods like thermally, by photocatalysis or by enzymatic activation. In addition, it is easy to modulate their chemical properties by modifying their structure. Thus we can imagine many various applications for these compounds. Here we will describe the synthesis of new alkoxyamines and investigations about their properties. These alkoxyamines have ben developed in order to acquire new knowledge about their reactivity, but also to improve their structures with respect to innovative applications like theranostic, or some new homolysis pathways like localized plasmon resonance
Robertson, Jeremy. "Ring expansion reaction via homolytic pathways". Thesis, University of Oxford, 1990. http://ora.ox.ac.uk/objects/uuid:194ca194-4848-470b-a21f-c16869257b96.
Texto completoSpratley, A. "Some studies of the homolytic reactions of chlorinated benzenes". Thesis, City University London, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355587.
Texto completoNorberg, Daniel. "Quantum Chemical Studies of Radical Cation Rearrangement, Radical Carbonylation, and Homolytic Substitution Reactions". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8178.
Texto completoCarré, Christiane. "Étude des réactions photoinduites de l'octahydro-1,2,3,4,6,7,8,9 phénazine en solution ou la voie des diazines vers la photo-homolyse de l'eau". Paris 11, 1985. http://www.theses.fr/1985PA112084.
Texto completoNi, Liming. "Synthesis and evaluation of new peptidyl phosphonate analogs of benzamidine, lysine and homolysine as irreversible inhibitors for thrombin and other trypsin-like enzymes". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/27080.
Texto completoLingua, Hugo. "SH2 sur les dialkylzincs par les radicaux α-alcoxycarbonyle, carbozincations et additions radicalaires impliquant des ynamides : approches expérimentales et théoriques". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0564.
Texto completoThe reactivity of ethyl α-bromoacrylate and ethyl benzylidene malonate towards dialkylzincs in aerobic medium was studied in order to evaluate the capacity of tertiary α-alcoxycarbonyl radicals to undergo SH2 at zinc leading to a zinc enolate. The use of ethyl α-bromoacrylate allowed the synthesis of cyclopropanes and keto-esters. With the second substrate, the addition of the alkyl group was shown to be reversible. The inhibitor effect of additives like TMSCl or CuCl suggested that zinc peroxydes formed in situ could play a key role in the process. Theoretical studies highlighted the crucial role of the stabilization of the zinc enolate through the formation of a 5 or 6-membered chelate. Regio- and stereoselective synthesis of tri- and tetra-substituted enamides was achieved through the carbozincation of ynamides in the presence of dialkylzincs and CuI or FeCl2 as catalyst. CuI was shown to be more efficient and less substrate-dependent than FeCl2. Molecular modelings were performed to better understand this phenomen. Finally, intermolecular addition of sulfanyl radicals onto ynamides was revisited. Theoretical calculations and experimental results showed that the regio- and stereo-selectivity of the process depended on the nature of the substituent on the carbon in β position of the nitrogen atom and on experimental conditions. Unprecedented intermolecular addition of a carbon-centered radical has been described and opened new perspectives for the synthesis of original tetrasubstituted enamides
Vallet, Anne-Laure. "Réactivités de NHC-Boranes Soufrés". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112261.
Texto completoAlong with the development of green chemistry, it became necessary to avoid toxic metallic complexes in organic reactions and replace them by more sustainable compounds. An hydrogen donors for radical reactions, trialkylstannanes are still widely used. NHC-boranes seem to be good substitutes for deoxygenation reactions. However, dehalogenation reactions are less effective and polar reversal catalysis was used. This work was the starting point of this Ph.D thesis where the synthesis of new NHC-boranes bearing a B-S or B-N bound is developed. The study of the properties of these new complexes was performed and applications in organic chemistry as well as in polymer science were found. Besides, to study polar effects on the formation and on the reactivity of boryl radicals, a new family of carbene-boranes was synthesized
Libros sobre el tema "Homolysis"
Turovsʹkyĭ, A. A. Non-valency interaction in organic peroxides homolysis reactions. Hauppauge, N.Y: Nova Science Publishers, 2011.
Buscar texto completo(Editor), Gennadii Efremovich Zaikov, Yu B. Monakov (Editor), Alfonso Jimenez (Editor) y Iu B. Monakov (Editor), eds. Homolytic and Heterolytic Reactions: Problems and Solutions. Nova Science Publishers, 2004.
Buscar texto completoHomolytic Aromatic Substitution: International Series of Monographs on Organic Chemistry. Elsevier Science & Technology Books, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Homolysis"
Cleaves, Henderson James. "Homolysis". En Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_733-3.
Texto completoCleaves, Henderson James. "Homolysis". En Encyclopedia of Astrobiology, 1117. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_733.
Texto completoCleaves, Henderson James. "Homolysis". En Encyclopedia of Astrobiology, 761–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_733.
Texto completoCleaves II, Henderson James. "Homolysis". En Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_733-4.
Texto completoCleaves II, Henderson James. "Homolysis". En Encyclopedia of Astrobiology, 1343–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_733.
Texto completoAntal, Michael Jerry, Andrew Brittain, Carlos DeAlmeida, Sundaresh Ramayya y Jiben C. Roy. "Heterolysis and Homolysis in Supercritical Water". En ACS Symposium Series, 77–86. Was,hington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0329.ch007.
Texto completoStein, Stephen E. y Mahendra M. Suryan. "Homolysis of Substituted Anisoles: Substituent Effects on Phenoxyl Radical Stabilities". En Oxygen Radicals in Biology and Medicine, 105–14. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5568-7_15.
Texto completoFink, Richard G. "Coenzyme B12-Based Chemical Precedent for Co-C Bond Homolysis and Other Key Elementary Steps". En Vitamin B12and B12-Proteins, 383–402. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2007. http://dx.doi.org/10.1002/9783527612192.ch25.
Texto completoRossi, Roberto A., María E. Budén y Javier F. Guastavino. "Homolytic Aromatic Substitution". En Arene Chemistry, 219–42. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118754887.ch9.
Texto completoHalpern, J. "Homolytic Ligand Dissociation". En Inorganic Reactions and Methods, 9. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch5.
Texto completoActas de conferencias sobre el tema "Homolysis"
Tumanov, Vladimir Evgen'vich y Andrei Ivanovich Prokhorov. "Web database on bond dissociation energies of organic compounds". En 23rd Scientific Conference “Scientific Services & Internet – 2021”. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/abrau-2021-21.
Texto completoJeremić, Svetlana R., Jelena R. Đorović Jovanović, Marijana S. Stanojević Pirković y Zoran S. Marković. "THERMODYNAMICALLY INVESTIGATIONS OF FREE RADICAL SCAVENGER POTENCY OF 1,2,4-TRIHYDROXYTHIOXANTHONE". En 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.414j.
Texto completoInformes sobre el tema "Homolysis"
Lee, Shaoyung. Kinetic study of the reaction of ferrocenes and ferrocenium ions with ground and excited states of tris(2,2-bipyridine)chromium ions and the preparation and homolysis of organocobalt complexes. Office of Scientific and Technical Information (OSTI), enero de 1990. http://dx.doi.org/10.2172/6835414.
Texto completoHeinekey, D. M. Homolytic activation of hydrocarbons and hydrogen by persistent metal radicals. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/6716196.
Texto completoHeinekey, D. M. Homolytic activation of hydrocarbons and hydrogen by persistent metal radicals. Progress report, January 1, 1992--November 1, 1992. Office of Scientific and Technical Information (OSTI), diciembre de 1992. http://dx.doi.org/10.2172/10136755.
Texto completo[Homolytic activation of hydrocarbons and hydrogen by persistent radicals]. Office of Scientific and Technical Information (OSTI), enero de 1993. http://dx.doi.org/10.2172/6837370.
Texto completo[Homolytic activation of hydrocarbons and hydrogen by persistent radicals]. Final report. Office of Scientific and Technical Information (OSTI), febrero de 1993. http://dx.doi.org/10.2172/10122867.
Texto completo