Siga este enlace para ver otros tipos de publicaciones sobre el tema: Holomorphic curvature.

Artículos de revistas sobre el tema "Holomorphic curvature"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Holomorphic curvature".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Ali, Danish, Johann Davidov y Oleg Mushkarov. "Holomorphic curvatures of twistor spaces". International Journal of Geometric Methods in Modern Physics 11, n.º 03 (marzo de 2014): 1450022. http://dx.doi.org/10.1142/s0219887814500224.

Texto completo
Resumen
We study the twistor spaces of oriented Riemannian 4-manifolds as a source of almost Hermitian 6-manifolds of constant or strictly positive holomorphic, Hermitian and orthogonal bisectional curvatures. In particular, we obtain explicit formulas for these curvatures in the case when the base manifold is Einstein and self-dual, and observe that the "squashed" metric on ℂℙ3 is a non-Kähler Hermitian–Einstein metric of positive holomorphic bisectional curvature. This shows that a recent result of Kalafat and Koca [M. Kalafat and C. Koca, Einstein–Hermitian 4-manifolds of positive bisectional curvature, preprint (2012), arXiv: 1206.3941v1 [math.DG]] in dimension four cannot be extended to higher dimensions. We prove that the Hermitian bisectional curvature of a non-Kähler Hermitian manifold is never a nonzero constant which gives a partial negative answer to a question of Balas and Gauduchon [A. Balas and P. Gauduchon, Any Hermitian metric of constant non-positive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler, Math. Z.190 (1985) 39–43]. Finally, motivated by an integrability result of Vezzoni [L. Vezzoni, On the Hermitian curvature of symplectic manifolds, Adv. Geom.7 (2007) 207–214] for almost Kähler manifolds, we study the problem when the holomorphic and the Hermitian bisectional curvatures of an almost Hermitian manifold coincide. We extend the result of Vezzoni to a more general class of almost Hermitian manifolds and describe the twistor spaces having this curvature property.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Decu, Simona, Stefan Haesen y Leopold Verstraelen. "Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature". Mathematics 8, n.º 2 (14 de febrero de 2020): 251. http://dx.doi.org/10.3390/math8020251.

Texto completo
Resumen
In this paper, we prove some inequalities in terms of the normalized δ -Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant) of statistical submanifolds in holomorphic statistical manifolds with constant holomorphic sectional curvature. Moreover, we study the equality cases of such inequalities. An example on these submanifolds is presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

SIDDIQUI, ALIYA NAAZ y MOHAMMAD HASAN SHAHID. "Optimizations on Statistical Hypersurfaces with Casorati Curvatures". Kragujevac Journal of Mathematics 45, n.º 03 (mayo de 2021): 449–63. http://dx.doi.org/10.46793/kgjmat2103.449s.

Texto completo
Resumen
In the present paper, we study Casorati curvatures for statistical hypersurfaces. We show that the normalized scalar curvature for any real hypersurface (i.e., statistical hypersurface) of a holomorphic statistical manifold of constant holomorphic sectional curvature k is bounded above by the generalized normalized δ−Casorati curvatures and also consider the equality case of the inequality. Some immediate applications are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Jain, Varun, Rachna Rani, Rakesh Kumar y R. K. Nagaich. "Some characterization theorems on holomorphic sectional curvature of GCR-lightlike submanifolds". International Journal of Geometric Methods in Modern Physics 14, n.º 03 (14 de febrero de 2017): 1750034. http://dx.doi.org/10.1142/s0219887817500347.

Texto completo
Resumen
We obtain the expressions for sectional curvature, holomorphic sectional curvature and holomorphic bisectional curvature of a GCR-lightlike submanifold of an indefinite Sasakian manifold and obtain some characterization theorems on holomorphic sectional and holomorphic bisectional curvature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kumar, Sangeet, Rakesh Kumar y R. K. Nagaich. "Characterization of Holomorphic Bisectional Curvature ofGCR-Lightlike Submanifolds". Advances in Mathematical Physics 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/356263.

Texto completo
Resumen
We obtain the expressions for sectional curvature, holomorphic sectional curvature, and holomorphic bisectional curvature of aGCR-lightlike submanifold of an indefinite Kaehler manifold. We discuss the boundedness of holomorphic sectional curvature ofGCR-lightlike submanifolds of an indefinite complex space form. We establish a condition for aGCR-lightlike submanifold of an indefinite complex space form to be null holomorphically flat. We also obtain some characterization theorems for holomorphic sectional and holomorphic bisectional curvature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sekigawa, Kouei y Takashi Koda. "Compact Hermitian surfaces of pointwise constant holomorphic sectional curvature". Glasgow Mathematical Journal 37, n.º 3 (septiembre de 1995): 343–49. http://dx.doi.org/10.1017/s0017089500031621.

Texto completo
Resumen
Let M = (M, J, g) be an almost Hermitian manifold and U(M)the unit tangent bundle of M. Then the holomorphic sectional curvature H = H(x) can be regarded as a differentiable function on U(M). If the function H is constant along each fibre, then M is called a space of pointwise constant holomorphic sectional curvature. Especially, if H is constant on the whole U(M), then M is called a space of constant holomorphic sectional curvature. An almost Hermitian manifold with an integrable almost complex structure is called a Hermitian manifold. A real 4-dimensional Hermitian manifold is called a Hermitian surface. Hermitian surfaces of pointwise constant holomorphic sectional curvature have been studied by several authors (cf. [2], [3], [5], [6] and so on).
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yu, Chengjie. "A Liouville Property of Holomorphic Maps". Scientific World Journal 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/265752.

Texto completo
Resumen
We prove a Liouville property of holomorphic maps from a complete Kähler manifold with nonnegative holomorphic bisectional curvature to a complete simply connected Kähler manifold with a certain assumption on the sectional curvature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Vanithalakshmi, S. M., S. K. Narasimhamurthy y M. K. Roopa. "On Holomorphic Curvature of Complex Finsler with special (α, β)−Metric". Journal of the Tensor Society 12, n.º 01 (30 de junio de 2007): 33–48. http://dx.doi.org/10.56424/jts.v12i01.10593.

Texto completo
Resumen
The notion of the holomorphic curvature for a Complex Finsler space (M, F) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. This paper is about the fundamental metric tensor, inverse tensor and as a special approach of the pull-back bundle is devoted to obtain the Riemannian curvature and holomorphic curvature of Complex Finsler with special (α, β)-metric
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Abu-Saleem, Ahmad, A. R. Rustanov y S. V. Kharitonova. "AXIOM OF Φ-HOLOMORPHIC (2r+1)-PLANES FOR GENERALIZED KENMOTSU MANIFOLDS". Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, n.º 66 (2020): 5–23. http://dx.doi.org/10.17223/19988621/66/1.

Texto completo
Resumen
In this paper we study generalized Kenmotsu manifolds (shortly, a GK-manifold) that satisfy the axiom of Φ-holomorphic (2r+1)-planes. After the preliminaries we give the definition of generalized Kenmotsu manifolds and the full structural equation group. Next, we define Φ- holomorphic generalized Kenmotsu manifolds and Φ-paracontact generalized Kenmotsu manifold give a local characteristic of this subclasses. The Φ-holomorphic generalized Kenmotsu manifold coincides with the class of almost contact metric manifolds obtained from closely cosymplectic manifolds by a canonical concircular transformation of nearly cosymplectic structure. A Φ- paracontact generalized Kenmotsu manifold is a special generalized Kenmotsu manifold of the second kind. An analytical expression is obtained for the tensor of Ф-holomorphic sectional curvature of generalized Kenmotsu manifolds of the pointwise constant Φ-holomorphic sectional curvature. Then we study the axiom of Φ-holomorphic (2r+1)-planes for generalized Kenmotsu manifolds and propose a complete classification of simply connected generalized Kenmotsu manifolds satisfying the axiom of Φ-holomorphic (2r+1)-planes. The main results are as follows. A simply connected GK-manifold of pointwise constant Φ-holomorphic sectional curvature satisfying the axiom of Φ-holomorphic (2r+1)-planes is a Kenmotsu manifold. A GK-manifold satisfies the axiom of Φ-holomorphic (2r+1)-planes if and only if it is canonically concircular to one of the following manifolds: (1) CPn×R; (2) Cn×R; and (3) CHn×R having the canonical cosymplectic structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Druţă-Romaniuc, S. L. "A Study on the Para-Holomorphic Sectional Curvature of Para-Kähler Cotangent Bundles". Annals of the Alexandru Ioan Cuza University - Mathematics 61, n.º 1 (1 de enero de 2015): 253–62. http://dx.doi.org/10.2478/aicu-2014-0033.

Texto completo
Resumen
Abstract We obtain the conditions under which the total space T *M of the cotangent bundle, endowed with a natural diagonal para-Kähler structure (G, P), has constant para-holomorphic sectional curvature. Moreover we prove that (T *M,G, P) cannot have nonzero constant para-holomorphic sectional curvature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Zhong, ChunPing. "Holomorphic curvature of complex Finsler submanifolds". Science China Mathematics 53, n.º 2 (27 de agosto de 2009): 261–74. http://dx.doi.org/10.1007/s11425-009-0044-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Mantz, Christiaan L. M. y Tomislav Prokopec. "Resolving Curvature Singularities in Holomorphic Gravity". Foundations of Physics 41, n.º 10 (4 de junio de 2011): 1597–633. http://dx.doi.org/10.1007/s10701-011-9570-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

CHEN, BIN y YIBING SHEN. "ON COMPLEX RANDERS METRICS". International Journal of Mathematics 21, n.º 08 (agosto de 2010): 971–86. http://dx.doi.org/10.1142/s0129167x10006367.

Texto completo
Resumen
A characteristic for a complex Randers metric to be a complex Berwald metric is obtained. The formula of the holomorphic curvature for complex Randers metrics is given. It is shown that a complex Berwald Randers metric with isotropic holomorphic curvature must be either usually Kählerian or locally Minkowskian. The Deicke and Brickell theorems in complex Finsler geometry are also proved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Abood, Habeeb Mtashar y Farah Al-Hussaini. "Locally Conformal Almost Cosymplectic Manifold of Φ-holomorphic Sectional Conharmonic Curvature Tensor". European Journal of Pure and Applied Mathematics 11, n.º 3 (31 de julio de 2018): 671–81. http://dx.doi.org/10.29020/nybg.ejpam.v11i3.3261.

Texto completo
Resumen
The aim of the present paper is to study the geometry of locally conformal almost cosymplectic manifold of Φ-holomorphic sectional conharmonic curvature tensor. In particular, the necessaryand sucient conditions in which that locally conformal almost cosymplectic manifold is a manifold of point constant Φ-holomorphic sectional conharmonic curvature tensor have been found. The relation between the mentioned manifold and the Einstein manifold is determined.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Mok, Ngaiming. "On holomorphic immersions into kähler manifolds of constant holomorphic sectional curvature". Science in China Series A: Mathematics 48, S1 (diciembre de 2005): 123–45. http://dx.doi.org/10.1007/bf02884700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Siddiqui, Aliya y Mohammad Shahid. "On totally real statistical submanifolds". Filomat 32, n.º 13 (2018): 4473–83. http://dx.doi.org/10.2298/fil1813473s.

Texto completo
Resumen
In the present paper, first we prove some results by using fundamental properties of totally real statistical submanifolds immersed into holomorphic statistical manifolds. Further, we obtain the generalizedWintgen inequality for Lagrangian statistical submanifolds of holomorphic statistical manifolds with constant holomorphic sectional curvature c. The paper finishes with some geometric consequences of obtained results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Shen, Bin. "Holomorphic Vanishing Theorems on Finsler Holomorphic Vector Bundles and Complex Finsler Manifolds". Canadian Mathematical Bulletin 62, n.º 3 (9 de noviembre de 2018): 623–41. http://dx.doi.org/10.4153/s0008439518000127.

Texto completo
Resumen
AbstractIn this paper, we investigate the holomorphic sections of holomorphic Finsler bundles over both compact and non-compact complete complex manifolds. We also inquire into the holomorphic vector fields on compact and non-compact complete complex Finsler manifolds. We get vanishing theorems in each case according to different certain curvature conditions. This work can be considered as generalizations of the classical results on Kähler manifolds and hermitian bundles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Rao, Pei Pei y Fang Yang Zheng. "Pluriclosed Manifolds with Constant Holomorphic Sectional Curvature". Acta Mathematica Sinica, English Series 38, n.º 6 (junio de 2022): 1094–104. http://dx.doi.org/10.1007/s10114-022-1046-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Gadea, Pedro y Ángel Montesinos-Amilibia. "Spaces of constant para-holomorphic sectional curvature". Pacific Journal of Mathematics 136, n.º 1 (1 de enero de 1989): 85–101. http://dx.doi.org/10.2140/pjm.1989.136.85.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Wong, Pit-Mann, Damin Wu y Shing-Tung Yau. "Picard number, holomorphic sectional curvature, and ampleness". Proceedings of the American Mathematical Society 140, n.º 2 (1 de febrero de 2012): 621–26. http://dx.doi.org/10.1090/s0002-9939-2011-10928-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

McNeal, Jeffery D. "Holomorphic sectional curvature of some pseudoconvex domains". Proceedings of the American Mathematical Society 107, n.º 1 (1 de enero de 1989): 113. http://dx.doi.org/10.1090/s0002-9939-1989-0979051-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Wan, Xueyuan. "Holomorphic Sectional Curvature of Complex Finsler Manifolds". Journal of Geometric Analysis 29, n.º 1 (25 de enero de 2018): 194–216. http://dx.doi.org/10.1007/s12220-018-9985-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Wu, Damin y Shing-Tung Yau. "Negative holomorphic curvature and positive canonical bundle". Inventiones mathematicae 204, n.º 2 (23 de agosto de 2015): 595–604. http://dx.doi.org/10.1007/s00222-015-0621-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Chinak, M. A. "Curvature and holomorphic sections of Hermitian bundles". Siberian Mathematical Journal 30, n.º 5 (1990): 823–29. http://dx.doi.org/10.1007/bf00971276.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Sato, Takuji y Kouei Sekigawa. "Hermitian surfaces of constant holomorphic sectional curvature". Mathematische Zeitschrift 205, n.º 1 (septiembre de 1990): 659–68. http://dx.doi.org/10.1007/bf02571270.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Abate, Marco y Giorgio Patrizio. "Kähler Finsler Manifolds of Constant Holomorphic Curvature". International Journal of Mathematics 08, n.º 02 (marzo de 1997): 169–86. http://dx.doi.org/10.1142/s0129167x97000081.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Yang, Bo y Fangyang Zheng. "Hirzebruch manifolds and positive holomorphic sectional curvature". Annales de l'Institut Fourier 69, n.º 6 (2019): 2589–634. http://dx.doi.org/10.5802/aif.3303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

JELONEK, WLODZIMIERZ. "KÄHLER SURFACES WITH QUASI CONSTANT HOLOMORPHIC CURVATURE". Glasgow Mathematical Journal 58, n.º 2 (21 de julio de 2015): 503–12. http://dx.doi.org/10.1017/s0017089515000312.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Jelonek, Włodzimierz. "Kähler manifolds with quasi-constant holomorphic curvature". Annals of Global Analysis and Geometry 36, n.º 2 (6 de febrero de 2009): 143–59. http://dx.doi.org/10.1007/s10455-009-9154-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Jelonek, Włodzimierz. "Kähler manifolds with quasi-constant holomorphic curvature". Annals of Global Analysis and Geometry 35, n.º 4 (27 de marzo de 2009): 443. http://dx.doi.org/10.1007/s10455-009-9161-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Chen, Xiaoyang. "Stein manifolds of nonnegative curvature". Advances in Geometry 18, n.º 3 (26 de julio de 2018): 285–87. http://dx.doi.org/10.1515/advgeom-2016-0025.

Texto completo
Resumen
AbstractLet X bea Stein manifold with an anti-holomorphic involution τ and nonempty compact fixed point set Xτ. We show that X is diffeomorphic to the normal bundle of Xτ provided that X admits a complete Riemannian metric g of nonnegative sectional curvature such that τ*g = g.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

ANDERSEN, JØRGEN ELLEGAARD y KENJI UENO. "ABELIAN CONFORMAL FIELD THEORY AND DETERMINANT BUNDLES". International Journal of Mathematics 18, n.º 08 (septiembre de 2007): 919–93. http://dx.doi.org/10.1142/s0129167x07004369.

Texto completo
Resumen
Following [10], we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [14, 16]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections are up to a scale the same as the curvature of the connections constructed in [14, 16]. We study the sewing construction for nodal curves and its explicit relation to the constructed connections. Finally we construct preferred holomorphic sections of these line bundles and analyze their behaviour near nodal curves. These results are used in [4] to construct modular functors form the conformal field theories given in [14, 16] by twisting with an appropriate factional power of this Abelian theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Li, Jiayu y Liuqing Yang. "Symplectic mean curvature flows in Kähler surfaces with positive holomorphic sectional curvatures". Geometriae Dedicata 170, n.º 1 (24 de mayo de 2013): 63–69. http://dx.doi.org/10.1007/s10711-013-9867-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

INNAMI, NOBUHIRO, YOE ITOKAWA y KATSUHIRO SHIOHAMA. "COMPLETE REAL HYPERSURFACES AND SPECIAL 𝕂-LINE BUNDLES IN 𝕂-HYPERBOLIC SPACES". International Journal of Mathematics 24, n.º 10 (septiembre de 2013): 1350082. http://dx.doi.org/10.1142/s0129167x13500821.

Texto completo
Resumen
Using the geometry of geodesics, we discuss the global aspects of complete real hypersurfaces in hyperbolic spaces of constant holomorphic sectional curvature [Formula: see text] over any division algebra 𝕂. Our assumption is that the shape operator and the curvature transformation with respect to the normal unit have the same eigenspaces. Note that we do not assume constancy of the principal curvatures. Under this assumption, we give a complete global classification of such hypersurfaces. Since the argument is purely geometric, we need not vary the argument for different base algebras. The foliations of [Formula: see text] with totally geodesic leaves called 𝕂-lines play an important role.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Bashir, M. A. "On totally umbilicalCR-submanifolds of a Kaehler manifold". International Journal of Mathematics and Mathematical Sciences 16, n.º 2 (1993): 405–8. http://dx.doi.org/10.1155/s016117129300050x.

Texto completo
Resumen
LetMbe a compact3-dimensional totally umbilicalCR-submanifold of a Kaehler manifold of positive holomorphic sectional curvature. We prove that if the length of the mean curvature vector ofMdoes not vanish, thenMis either diffeomorphic toS3orRP3or a lens spaceLp,q3.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Oproiu, Vasile. "A Kähler Einstein structure on the tangent bundle of a space form". International Journal of Mathematics and Mathematical Sciences 25, n.º 3 (2001): 183–95. http://dx.doi.org/10.1155/s0161171201002009.

Texto completo
Resumen
We obtain a Kähler Einstein structure on the tangent bundle of a Riemannian manifold of constant negative curvature. Moreover, the holomorphic sectional curvature of this Kähler Einstein structure is constant. Similar results are obtained for a tube around zero section in the tangent bundle, in the case of the Riemannian manifolds of constant positive curvature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

SIMANCA, SANTIAGO R. "PRECOMPACTNESS OF THE CALABI ENERGY". International Journal of Mathematics 07, n.º 02 (abril de 1996): 245–54. http://dx.doi.org/10.1142/s0129167x96000141.

Texto completo
Resumen
For any complex manifold of Kähler type, the L2-norm of the scalar curvature of an extremal Kähler metric is a continuous function of the Kähler class. In particular, if a convergent sequence of Kähler classes are represented by extremal Kähler metrics, the corresponding sequence of L2-norms of the scalar curvatures is convergent. Similarly, the sequence of holomorphic vector fields associated with a sequence of extremal Kähler metrics with converging Kähler classes is convergent.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

HARRIS, ADAM y YOSHIHIRO TONEGAWA. "ANALYTIC CONTINUATION OF VECTOR BUNDLES WITH Lp –CURVATURE". International Journal of Mathematics 11, n.º 01 (febrero de 2000): 29–40. http://dx.doi.org/10.1142/s0129167x00000040.

Texto completo
Resumen
This article addresses the problem of removable singularities for a Hermitian-holomorphic vector bundle ℰ, defined on the complement of an analytic set A of complex codimension at least two in a complex n-dimensional manifold X. In particular it is shown here that there exists a unique holomorphic bundle [Formula: see text] on X, such that [Formula: see text], when the curvature of ℰ belongs to Ln (X\A). This result is in fact sharp, as counterexamples exist for the extensibility of ℰ with curvature in Lp, p < n. Extension across general closed subsets of finite (2n - 4)-dimensional Hausdorff measure then follows directly from a slicing theorem of Bando and Siu.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

YAN, RONGMU. "COMPLEX BERWALD MANIFOLDS WITH VANISHING HOLOMORPHIC SECTIONAL CURVATURE". Glasgow Mathematical Journal 50, n.º 2 (mayo de 2008): 203–8. http://dx.doi.org/10.1017/s001708950800414x.

Texto completo
Resumen
AbstractIn this paper, we prove that a strongly convex and Kähler-Finsler metric is a complex Berwald metric with zero holomorphic sectional curvature if and only if it is a complex locally Minkowski metric.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

SATO, TAKUJI y KOUEI SEKIGAWA. "HERMITIAN SURFACES OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE II". Tamkang Journal of Mathematics 23, n.º 2 (1 de junio de 1992): 137–43. http://dx.doi.org/10.5556/j.tkjm.23.1992.4536.

Texto completo
Resumen
The present paper ss a continuation of our previous work [7]. We shall prove that a compact Hernutian surface of pointwise positive constant holomorphic sectional curvature is biholomorphica.lly equivalent to a complex projective surface.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Ahmad, Abu-Saleem, Ivan Kochetkov y Aligadzhi Rustanov. "Curvature Identities for Generalized Kenmotsu Manifolds". E3S Web of Conferences 244 (2021): 09005. http://dx.doi.org/10.1051/e3sconf/202124409005.

Texto completo
Resumen
In the present paper we obtained 2 identities, which are satisfied by Riemann curvature tensor of generalized Kenmotsu manifolds. There was obtained an analytic expression for third structure tensor or tensor of f-holomorphic sectional curvature of GK-manifold. We separated 2 classes of generalized Kenmotsu manifolds and collected their local characterization.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Harris, Adam y Martin Kolář. "On Hyperbolicity of Domains with Strictly Pseudoconvex Ends". Canadian Journal of Mathematics 66, n.º 1 (febrero de 2014): 197–204. http://dx.doi.org/10.4153/cjm-2012-036-4.

Texto completo
Resumen
AbstractThis article establishes a sufficient condition for Kobayashi hyperbolicity of unbounded domains in terms of curvature. Specifically, when Ω ⊂ ℂn corresponds to a sub-level set of a smooth, real-valued function Ψ such that the form ω = is Kähler and has bounded curvature outside a bounded subset, then this domain admits a hermitian metric of strictly negative holomorphic sectional curvature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Siddiqui, Aliya, Falleh Al-Solamy, Mohammad Shahid y Ion Mihaid. "On CR-statistical submanifolds of holomorphic statistical manifolds". Filomat 35, n.º 11 (2021): 3571–84. http://dx.doi.org/10.2298/fil2111571s.

Texto completo
Resumen
In the present paper, weinvestigate some properties of the distributions involved in the definition of a CR-statistical submanifold. The characterization of a CR-product in holomorphic statistical manifolds is given. By using an optimization technique, we establish a relationship between the Ricci curvature and the squared norm of the mean curvature of any submanifold in the same ambient space. The equality case is also discussed here. This paper finishes with some related examples.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

LeBrun, Claude. "Einstein metrics, conformal curvature, and anti-holomorphic involutions". Annales mathématiques du Québec 45, n.º 2 (19 de febrero de 2021): 391–405. http://dx.doi.org/10.1007/s40316-020-00154-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Vanithalakshmi, Sarathi Mallappa, Senajji Kampalappa Narasimhamurhthy y Mallappa Kariyappa Roopa. "On Holomorphic Curvature of Complex Finsler Square Metric". Advances in Pure Mathematics 09, n.º 09 (2019): 745–61. http://dx.doi.org/10.4236/apm.2019.99035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Pinney, Karen R. "Ricci Curvature and Holomorphic Convexity in Kahler Manifolds". Proceedings of the American Mathematical Society 121, n.º 4 (agosto de 1994): 1211. http://dx.doi.org/10.2307/2161234.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Sato, Takuji. "Almost Kahler manifolds of constant holomorphic sectional curvature". Tsukuba Journal of Mathematics 20, n.º 2 (diciembre de 1996): 517–24. http://dx.doi.org/10.21099/tkbjm/1496163099.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Berndtsson, Bo. "Curvature of vector bundles associated to holomorphic fibrations". Annals of Mathematics 169, n.º 2 (1 de marzo de 2009): 531–60. http://dx.doi.org/10.4007/annals.2009.169.531.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

TSUJI, Tadashi. "Homogeneous Siegel Domains of Nonpositive Holomorphic Bisectional Curvature". Tokyo Journal of Mathematics 14, n.º 2 (diciembre de 1991): 439–51. http://dx.doi.org/10.3836/tjm/1270130384.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Sekigawa, Kouei y Takuji Sato. "Nearly Kähler manifolds with positive holomorphic sectional curvature". Kodai Mathematical Journal 8, n.º 2 (1985): 139–56. http://dx.doi.org/10.2996/kmj/1138037043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía