Literatura académica sobre el tema "Holomorphic curvature"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Holomorphic curvature".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Holomorphic curvature"
Ali, Danish, Johann Davidov y Oleg Mushkarov. "Holomorphic curvatures of twistor spaces". International Journal of Geometric Methods in Modern Physics 11, n.º 03 (marzo de 2014): 1450022. http://dx.doi.org/10.1142/s0219887814500224.
Texto completoDecu, Simona, Stefan Haesen y Leopold Verstraelen. "Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature". Mathematics 8, n.º 2 (14 de febrero de 2020): 251. http://dx.doi.org/10.3390/math8020251.
Texto completoSIDDIQUI, ALIYA NAAZ y MOHAMMAD HASAN SHAHID. "Optimizations on Statistical Hypersurfaces with Casorati Curvatures". Kragujevac Journal of Mathematics 45, n.º 03 (mayo de 2021): 449–63. http://dx.doi.org/10.46793/kgjmat2103.449s.
Texto completoJain, Varun, Rachna Rani, Rakesh Kumar y R. K. Nagaich. "Some characterization theorems on holomorphic sectional curvature of GCR-lightlike submanifolds". International Journal of Geometric Methods in Modern Physics 14, n.º 03 (14 de febrero de 2017): 1750034. http://dx.doi.org/10.1142/s0219887817500347.
Texto completoKumar, Sangeet, Rakesh Kumar y R. K. Nagaich. "Characterization of Holomorphic Bisectional Curvature ofGCR-Lightlike Submanifolds". Advances in Mathematical Physics 2012 (2012): 1–18. http://dx.doi.org/10.1155/2012/356263.
Texto completoSekigawa, Kouei y Takashi Koda. "Compact Hermitian surfaces of pointwise constant holomorphic sectional curvature". Glasgow Mathematical Journal 37, n.º 3 (septiembre de 1995): 343–49. http://dx.doi.org/10.1017/s0017089500031621.
Texto completoYu, Chengjie. "A Liouville Property of Holomorphic Maps". Scientific World Journal 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/265752.
Texto completoVanithalakshmi, S. M., S. K. Narasimhamurthy y M. K. Roopa. "On Holomorphic Curvature of Complex Finsler with special (α, β)−Metric". Journal of the Tensor Society 12, n.º 01 (30 de junio de 2007): 33–48. http://dx.doi.org/10.56424/jts.v12i01.10593.
Texto completoAbu-Saleem, Ahmad, A. R. Rustanov y S. V. Kharitonova. "AXIOM OF Φ-HOLOMORPHIC (2r+1)-PLANES FOR GENERALIZED KENMOTSU MANIFOLDS". Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, n.º 66 (2020): 5–23. http://dx.doi.org/10.17223/19988621/66/1.
Texto completoDruţă-Romaniuc, S. L. "A Study on the Para-Holomorphic Sectional Curvature of Para-Kähler Cotangent Bundles". Annals of the Alexandru Ioan Cuza University - Mathematics 61, n.º 1 (1 de enero de 2015): 253–62. http://dx.doi.org/10.2478/aicu-2014-0033.
Texto completoTesis sobre el tema "Holomorphic curvature"
Carneiro, Josà Loester SÃ. "Sobre subvariedades totalmente reais". Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=6646.
Texto completoCoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
Subvariedades analÃticas complexas e totalmente reais sÃo duas classes tÃpicas dentre todas as subvariedades de uma variedade quase Hermitiana. Neste trabalho procuramos dar algumas caracterizaÃÃes de subvariedades totalmente reais. AlÃm disso algumas classificaÃÃes de subvariedades totalmente reais em formas espaciais complexas sÃo obtidas.
Complex analytic submanifolds and totally real submanifolds are two typical classes among all submanifolds of an almost Hermitian manifolds. In this work, some characterizations of totally real submanifolds are given. Moreover some classifications of totally real submanifolds in complex space forms are obtained.
Tsui, Ho-yu y 徐浩宇. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodairasurfaces". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37053760.
Texto completoTsui, Ho-yu. "Families of polarized abelian varieties and a construction of Kähler metrics of negative holomorphic bisectional curvature on Kodaira surfaces". Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37053760.
Texto completoSantos, Adina Rocha dos. "Teoremas de comparação em variedades Käler e aplicações". Universidade Federal de Alagoas, 2011. http://repositorio.ufal.br/handle/riufal/1044.
Texto completoConselho Nacional de Desenvolvimento Científico e Tecnológico
Nesta dissertação, apresentamos as demonstrações dos teoremas de comparação do Laplaciano para variedades Kähler completas Mm de dimensão complexa m com curvatura bisseccional holomorfa limitada inferiormente por −1, 1 e 0. As variedades a serem comparadas são o espaço hiperbólico complexo CHm, o espaço projetivo complexo CPm e o espaço Euclidiano complexo Cm, cujas curvaturas bisseccionais holomorfas são −1, 1 e 0, respectivamente. Além disso, como aplicação dos teoremas de comparação do Laplaciano, descrevemos a prova do Teorema de Comparação de Bishop-Gromov para variedades Kähler; obtemos uma estimativa para o primeiro autovalor λ1(M) do Laplaciano, isto é, λ1(M) ≤ m2 = λ1(CHm); e mostramos que o volume de variedades Kähler, com curvatura bisseccional limitada inferiormente por 1, é limitado pelo volume de CPm. Os resultados citados acima foram provados em 2005 por Li e Wang no artigo Comparison Theorem for Kähler Manifolds and Positivity of Spectrum , publicado no Journal of Differential Geometry.
Gontard, Sébastien. "Courbures de métriques invariantes dans les variétés complexes non compactes". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM027/document.
Texto completoWe study the relationships between geometric properties and metric properties of domains in C^n.More precisely, we are interested in the behavior of holomorphic bisectional curvatures of invariant Kähler metrics, namely the Bergman metric and the Kähler-Einstein metric, near the boundary of bounded pseudoconvex domains with smooth boundary.We prove that at boundary points that are either strictly pseudoconvex or such that the squeezing function of the domain tends to one the holomorphic bisectional curvatures of the Kähler-Einstein metric of the domain tends to the holomorphic bisectional curvatures of the Kähler-Einstein metric of the ball.We also study the holomorphic bisectional curvatures of the Kähler-Einstein metric and of the Bergman metric in some polynomial domains (namely tube and Thullen domains in C^2) which serve as local models at boundary point of finite type. Using these studies we prove that at certain boundary points of smoothly bounded convex domains of finite type there exists a non tangential neighbourhood such the holomorphic bisectional curvatures of the Kähler-Einstein metric are pinched between two negative constants. We also prove that for every smoothly bounded pseudoconvex complete Reinhardt domain of finite type inf C^2 there exists a neighbourhood of the boundary relative to the domain in which the holomorphic bisectional curvatures of the Bergman metric are pinched between two negative constants
Ben, Ahmed Ali. "Géométrie et dynamique des structures Hermite-Lorentz". Thesis, Lyon, École normale supérieure, 2013. http://www.theses.fr/2013ENSL0824.
Texto completoIn the vein of Klein's Erlangen program, the research works of E. Cartan, M.Gromov and others, this work straddles between geometry and group actions. The overall theme is to understand the isometry groups of pseudo-Riemannian manifolds. Precisely, following a "vague conjecture" of Gromov, our aim is to classify Pseudo-Riemannian manifolds whose isometry group act’s not properly, i.e that it’s action does not preserve any auxiliary Riemannian metric. Several studies have been made in the case of the Lorentzian metrics (i.e of signature (- + .. +)). However, general pseudo-Riemannian case seems out of reach. The Hermite-Lorentz structures are between the Lorentzian case and the former general pseudo-Riemannian, i.e of signature (- -+ ... +). In addition, it’s defined on complex manifolds, and promises an extra-rigidity. More specifically, a Hermite-Lorentz structure on a complex manifold is a pseudo-Riemannian metric of signature (- -+ ... +), which is Hermitian in the sense that it’s invariant under the almost complex structure. By analogy with the classical Hermitian case, we naturally define a notion of Kähler-Lorentz metric. We cite as example the complex Minkowski space in where, in a sense, we have a one-dimensional complex time (the real point of view, the time is two-dimensional). We cite also the de Sitter and Anti de Sitter complex spaces. They have a constant holomorphic curvature, and generalize in this direction the projective and complex hyperbolic spaces.This thesis focuses on the Hermite-Lorentz homogeneous spaces. In addition with given examples, two other symmetric spaces can naturally play the role of complexification of the de Sitter and anti de Sitter real spaces.The main result of the thesis is a rigidity theorem of these symmetric spaces: any space Hermite-Lorentz isotropy irreducible homogeneous is one of the five previous symmetric spaces. Other results concern the case where we replace the irreducible hypothesis by the fact that the isometry group is semisimple
LOHOVE, SIMON PETER. "Holomorphic curvature of Kähler Einstein metrics on generalised flag manifolds". Doctoral thesis, 2019. http://hdl.handle.net/2158/1151431.
Texto completoKeshari, Dinesh Kumar. "Infinitely Divisible Metrics, Curvature Inequalities And Curvature Formulae". Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2332.
Texto completoLafrance, Marie. "Solutions à courbure constante de modèles sigma supersymétriques". Thèse, 2017. http://hdl.handle.net/1866/20204.
Texto completo"Symplectic Topology and Geometric Quantum Mechanics". Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.9478.
Texto completoDissertation/Thesis
Ph.D. Mathematics 2011
Libros sobre el tema "Holomorphic curvature"
Concentration, functional inequalities, and isoperimetry: International workshop, October 29-November 1, 2009, Florida Atlantic University, Boca Raton, Florida. Providence, R.I: American Mathematical Society, 2011.
Buscar texto completoCapítulos de libros sobre el tema "Holomorphic curvature"
Abate, Marco y Giorgio Patrizio. "Manifolds with constant holomorphic curvature". En Finsler Metrics—A Global Approach, 127–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073983.
Texto completoMok, Ngaiming. "Compact kähler manifolds of nonnegative holomorphic bisectional curvature". En Complex Analysis and Algebraic Geometry, 90–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0076997.
Texto completoBoyom, Michel Nguiffo, Aliya Naaz Siddiqui, Wan Ainun Mior Othman y Mohammad Hasan Shahid. "Classification of Totally Umbilical CR-Statistical Submanifolds in Holomorphic Statistical Manifolds with Constant Holomorphic Curvature". En Lecture Notes in Computer Science, 809–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68445-1_93.
Texto completoDiverio, Simone. "Quasi-Negative Holomorphic Sectional Curvature and Ampleness of the Canonical Class". En Complex and Symplectic Geometry, 61–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62914-8_5.
Texto completoHussin, Véronique, Marie Lafrance y İsmet Yurduşen. "Constant Curvature Holomorphic Solutions of the Supersymmetric G(2, 4) Sigma Model". En Quantum Theory and Symmetries, 91–100. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55777-5_8.
Texto completoTaubes, Clifford Henry. "Holomorphic submanifolds, holomorphic sections and curvature". En Differential Geometry, 268–81. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199605880.003.0018.
Texto completoKLINGENBERG, WILHELM. "ON COMPACT KAEHLERIAN MANIFOLDS WITH POSITIVE HOLOMORPHIC CURVATURE". En Series in Pure Mathematics, 294–300. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789812812797_0020.
Texto completoBulnes, Francisco. "Integral Geometry and Cohomology in Field Theory on the Space-Time as Complex Riemannian Manifold". En Advances in Complex Analysis and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92969.
Texto completoHSIUNG, Chuan-Chih, Wenmao YANG y Lew FRIEDLAND. "HOLOMORPHIC SECTIONAL AND BISECTIONAL CURVATURES OF ALMOST HERMITIAN MANIFOLDS". En Selected Papers of Chuan-Chih Hsiung, 632–53. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810618_0061.
Texto completoActas de conferencias sobre el tema "Holomorphic curvature"
Druţă, S. L. "COTANGENT BUNDLES WITH GENERAL NATURAL KÄHLER STRUCTURES OF QUASI-CONSTANT HOLOMORPHIC SECTIONAL CURVATURES". En Proceedings of the VIII International Colloquium. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814261173_0033.
Texto completo