Literatura académica sobre el tema "HLA knockout"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "HLA knockout".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "HLA knockout"
McCarty, Todd M., Zhiwei Yu, Xiping Liu, Don J. Diamond y Joshua D. I. Ellenhorn. "An HLA-restricted, p53 specific immune response from HLA transgenic p53 knockout mice". Annals of Surgical Oncology 5, n.º 1 (enero de 1998): 93–99. http://dx.doi.org/10.1007/bf02303770.
Texto completoSuzuki, Daisuke, Naoshi Sugimoto, Norihide Yoshikawa, Hiroshi Endo, Sou Nakamura, Akitsu Hotta y Koji Eto. "Natural Killer Cell Activities Against iPSCs-Derived HLA-Knockout Platelets and Megakaryocytes Reveal Perfect Rejection Profiles for Allotransfusion". Blood 128, n.º 22 (2 de diciembre de 2016): 3841. http://dx.doi.org/10.1182/blood.v128.22.3841.3841.
Texto completoKwon, Yoo-Wook, Hyo-Suk Ahn, Jin-Woo Lee, Han-Mo Yang, Hyun-Jai Cho, Seok Joong Kim, Shin-Hyae Lee et al. "HLA DR Genome Editing with TALENs in Human iPSCs Produced Immune-Tolerant Dendritic Cells". Stem Cells International 2021 (20 de mayo de 2021): 1–14. http://dx.doi.org/10.1155/2021/8873383.
Texto completoZha, Shijun, Johan Chin-Kang Tay, Sumin Zhu, Zhendong Li, Zhicheng Du y Shu Wang. "Generation of Mesenchymal Stromal Cells with Low Immunogenicity from Human PBMC-Derived β2 Microglobulin Knockout Induced Pluripotent Stem Cells". Cell Transplantation 29 (1 de enero de 2020): 096368972096552. http://dx.doi.org/10.1177/0963689720965529.
Texto completoKarkischenko, V. N., A. G. Berzina, I. A. Pomytkin, E. S. Glotova, M. A. Savina, D. V. Petrov, L. A. Taboyakova, L. А. Bolotskih y I. A. Vasil’eva. "Immune Response in HLA-A*02:01 Transgenic Humanized Mice to the Introduction of Horse IgG Antigen". Journal Biomed 20, n.º 2 (23 de julio de 2024): 45–52. http://dx.doi.org/10.33647/2074-5982-20-2-45-52.
Texto completoRivera González, Lorena, Yaritza Inostroza-Nieves, Alexandra Lozano, Pablo J. López, Jamie Rosado Alicea, Gregory N. Prado, Jose R. Romero y Alicia Rivera. "Endothelin-1 Regulates Molecules of the Major Histocompatibility Complex: Role in Sickle Cell Disease". Blood 128, n.º 22 (2 de diciembre de 2016): 3638. http://dx.doi.org/10.1182/blood.v128.22.3638.3638.
Texto completoVeldman, Johanna, Lydia Visser, Magdalena Huberts-Kregel, Natasja Muller, Bouke Hepkema, Anke van den Berg y Arjan Diepstra. "Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58". Blood 136, n.º 21 (19 de noviembre de 2020): 2437–41. http://dx.doi.org/10.1182/blood.2020005546.
Texto completoChen, Liye, Hui Shi, Jack Yuan y Paul Bowness. "Position 97 of HLA-B, a residue implicated in pathogenesis of ankylosing spondylitis, plays a key role in cell surface free heavy chain expression". Annals of the Rheumatic Diseases 76, n.º 3 (11 de agosto de 2016): 593–601. http://dx.doi.org/10.1136/annrheumdis-2016-209512.
Texto completoTorikai, Hiroki, Andreas Reik, Carrie Yuen, Yuanyue Zhou, Denise Kellar, Helen Huls, Edus H. Warren et al. "HLA and TCR Knockout by Zinc Finger Nucleases: Toward “off-the-Shelf” Allogeneic T-Cell Therapy for CD19+ Malignancies." Blood 116, n.º 21 (19 de noviembre de 2010): 3766. http://dx.doi.org/10.1182/blood.v116.21.3766.3766.
Texto completoLegut, Mateusz, Garry Dolton, Afsar Ali Mian, Oliver G. Ottmann y Andrew K. Sewell. "CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells". Blood 131, n.º 3 (18 de enero de 2018): 311–22. http://dx.doi.org/10.1182/blood-2017-05-787598.
Texto completoTesis sobre el tema "HLA knockout"
Wang, Valentine. "Improving Allogeneic CAR-T cells : HLA class I KO Virus Specific T cells to limit GvHD and graft rejection". Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0235_WANG.pdf.
Texto completoCAR-T cell therapy have revolutionized cancer treatment by modifying a patient's T cells to target specific tumor antigens. This personalized approach has shown remarkable success in treating B-cell malignancies like leukemia and lymphoma. However, the process is costly and time-consuming, as it involves collecting and modifying the patient's own cells, which delays treatment. Moreover, some patients may not have sufficient or viable T cells due to prior treatments or advanced disease stages, limiting the availability of CAR-T therapies for all patients.To address these challenges, allogeneic CAR-T cells from healthy donors provide a faster and more scalable solution, reducing production time and costs. However, these off-the-shelf therapies face risks like graft-versus-host disease (GvHD), where donor cells might attack the patient's tissues. Our study explored combining CAR technology with Virus Specific T cells (VSTs), known for their antiviral and antitumor properties, to generate CAR-VSTs. These dual-specific CAR-VSTs present a promising alternative, especially for patients prone to both tumor relapse and viral reactivation.In our study, we generated CAR-Ts and CAR-VSTs from same donors obtaining 40.28%±9.30% and 35.96%±11.40% CD19.CAR expression on day 7 (N=3), respectively. In vitro, CAR-VSTs showed robust tumor clearance similar to CAR-Ts, achieving 74.13%±22.06% lysis of CD19+ tumor cells. In a murine lymphoma model, both CAR-VSTs and CAR-Ts demonstrated comparable antitumor efficacy, successfully controlling tumor growth and improving survival. Moreover, CAR-VSTs maintained their antiviral function, efficiently lysing 62.32%±13.84% virus-peptide-pulsed cells, similar to native VSTs. We assessed the alloreactivity of CAR-VSTs and found that they exhibited significantly lower CD3 proliferation rates (28.27%±21.64%) compared to CAR-T cells (88.3%±24.48%, p=0.0285, N=4), indicating a reduced risk of GvHD. CAR-VSTs' dual-specificity for both tumor and viral antigens makes them a powerful tool to address cancer relapse and viral complications in patients.In collaboration with the University of North Carolina, we explored strategies to delete HLA class I molecules in CAR-VSTs by targeting B-2-microglobulin (B2M), aiming to reduce immune rejection. In addition, we worked on overexpressing tolerogenic molecules such as HLA-E and HLA-G to prevent NK cell-mediated lysis. Our results showed an HLA-ABC expression of 15.1±14.6% (N=11) after CRISPR/Cas9 knockout, which indicates successful deletion, though further optimization is necessary to prevent NK-lysis by re-expressing HLA-E or HLA-G.In conclusion, generating HLA-E+ or G+/B2M-/CAR-VSTs offers a promising alternative for creating fully allogeneic cells. These modified CAR-VSTs retain their dual antiviral and antitumor functions, making them a promising candidate for "off-the-shelf" immunotherapies that could reduce the risks of immune rejection and graft-versus-host disease
Libros sobre el tema "HLA knockout"
Pham, Minh-Ha T. Why We Can't Have Nice Things. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478023210.
Texto completoJara Orellana,, Claudia. Efectos de la proteína Tau sobre la disfunción mitocondrial y el deterioro cognitivo en el envejecimiento. Universidad Autónoma de Chile, 2018. http://dx.doi.org/10.32457/20.500.12728/87452018dcbm6.
Texto completoCapítulos de libros sobre el tema "HLA knockout"
Bly, Mary. "Bawdy Virgins and Queer Puns". En Queer Virgins and Virgin Queans on the Early Modern Stage, 1–27. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780198186991.003.0001.
Texto completoActas de conferencias sobre el tema "HLA knockout"
Neklesova, M. V., S. A. Silonov, E. Y. Smirnov, R. R. Sharipov, A. M. Surin, I. M. Kuznetsova, K. K. Turoverov y A. V. Fonin. "THE ROLE OF PROMYELOCYTIC LEUKEMIA PROTEIN IN MAMMALIAN INTRACELLULAR CALCIUM TRANSPORT". En XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ: БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-262.
Texto completo