Tesis sobre el tema "Hilbert spaces"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Hilbert spaces".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wigestrand, Jan. "Inequalities in Hilbert Spaces". Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9673.
Texto completoThe main result in this thesis is a new generalization of Selberg's inequality in Hilbert spaces with a proof. In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz inequality and the Bessel inequality. As an example of application of the Cauchy-Schwarz inequality and the Bessel inequality, we give an estimate for the dimension of an eigenspace of an integral operator. Next we give a proof of Selberg's inequality including the equality conditions following [Furuta]. In Chapter 2 we give selected facts on positive semidefinite matrices with proofs or references. Then we use this theory for positive semidefinite matrices to study inequalities. First we give a proof of a generalized Bessel inequality following [Akhiezer,Glazman], then we use the same technique to give a new proof of Selberg's inequality. We conclude with a new generalization of Selberg's inequality with a proof. In the last section of Chapter 2 we show how the matrix approach developed in Chapter 2.1 and Chapter 2.2 can be used to obtain optimal frame bounds. We introduce a new notation for frame bounds.
Ameur, Yacin. "Interpolation of Hilbert spaces". Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.
Texto completoAmeur, Yacin. "Interpolation of Hilbert spaces /". Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Texto completoPanayotov, Ivo. "Conjugate gradient in Hilbert spaces". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82402.
Texto completoBahmani, Fatemeh. "Ternary structures in Hilbert spaces". Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/697.
Texto completoDas, Tushar. "Kleinian Groups in Hilbert Spaces". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149579/.
Texto completoHarris, Terri Joan Mrs. "HILBERT SPACES AND FOURIER SERIES". CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.
Texto completoDieuleveut, Aymeric. "Stochastic approximation in Hilbert spaces". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE059/document.
Texto completoThe goal of supervised machine learning is to infer relationships between a phenomenon one seeks to predict and “explanatory” variables. To that end, multiple occurrences of the phenomenon are observed, from which a prediction rule is constructed. The last two decades have witnessed the apparition of very large data-sets, both in terms of the number of observations (e.g., in image analysis) and in terms of the number of explanatory variables (e.g., in genetics). This has raised two challenges: first, avoiding the pitfall of over-fitting, especially when the number of explanatory variables is much higher than the number of observations; and second, dealing with the computational constraints, such as when the mere resolution of a linear system becomes a difficulty of its own. Algorithms that take their roots in stochastic approximation methods tackle both of these difficulties simultaneously: these stochastic methods dramatically reduce the computational cost, without degrading the quality of the proposed prediction rule, and they can naturally avoid over-fitting. As a consequence, the core of this thesis will be the study of stochastic gradient methods. The popular parametric methods give predictors which are linear functions of a set ofexplanatory variables. However, they often result in an imprecise approximation of the underlying statistical structure. In the non-parametric setting, which is paramount in this thesis, this restriction is lifted. The class of functions from which the predictor is proposed depends on the observations. In practice, these methods have multiple purposes, and are essential for learning with non-vectorial data, which can be mapped onto a vector in a functional space using a positive definite kernel. This allows to use algorithms designed for vectorial data, but requires the analysis to be made in the non-parametric associated space: the reproducing kernel Hilbert space. Moreover, the analysis of non-parametric regression also sheds some light on the parametric setting when the number of predictors is much larger than the number of observations. The first contribution of this thesis is to provide a detailed analysis of stochastic approximation in the non-parametric setting, precisely in reproducing kernel Hilbert spaces. This analysis proves optimal convergence rates for the averaged stochastic gradient descent algorithm. As we take special care in using minimal assumptions, it applies to numerous situations, and covers both the settings in which the number of observations is known a priori, and situations in which the learning algorithm works in an on-line fashion. The second contribution is an algorithm based on acceleration, which converges at optimal speed, both from the optimization point of view and from the statistical one. In the non-parametric setting, this can improve the convergence rate up to optimality, even inparticular regimes for which the first algorithm remains sub-optimal. Finally, the third contribution of the thesis consists in an extension of the framework beyond the least-square loss. The stochastic gradient descent algorithm is analyzed as a Markov chain. This point of view leads to an intuitive and insightful interpretation, that outlines the differences between the quadratic setting and the more general setting. A simple method resulting in provable improvements in the convergence is then proposed
Boralugoda, Sanath Kumara. "Prox-regular functions in Hilbert spaces". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0006/NQ34740.pdf.
Texto completoLapinski, Felicia. "Hilbert spaces and the Spectral theorem". Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.
Texto completoTipton, James Edward. "Reproducing Kernel Hilbert spaces and complex dynamics". Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2284.
Texto completoEUSEBI, Anita. "Quantum Cryptography in d-dimensional Hilbert spaces". Doctoral thesis, Università degli Studi di Camerino, 2011. http://hdl.handle.net/11581/401811.
Texto completoKiteu, Marco M. "Orbits of operators on Hilbert space and some classes of Banach spaces". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1341850621.
Texto completoSprungk, Björn. "Numerical Methods for Bayesian Inference in Hilbert Spaces". Doctoral thesis, Universitätsbibliothek Chemnitz, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-226748.
Texto completoBayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert
VIEIRA, PAULO CESAR MARQUES. "STABILITY FOR DISCRETE LINEAR SYSTEMS IN HILBERT SPACES". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1988. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8426@1.
Texto completoEste trabalho aborda o problema da estabilidade de sistemas lineares, invariantes no tempo, a tempo discreto, com o espaço de estado sendo um espaço de Hilbert complexo e separável de dimensão infinita. São investigadas condições necessárias e/ou suficientes para quatro conceitos diferentes de estabilidade: estabilidade assintótica uniforme e estabilidade assintótica forte, estabilidade assintótica fraca e estabilidade limitada. Identifica-se e analisa-se as conexões entre os problemas de estabilidade e dois problemas em aberto da teoria de operadores em espaços de Hilbert: o problema do subespaço invariante e o problemas da similaridade e contração. Diversos resultados, oriundos de tentativas de solução para os dois problemas acima, ou motivados por aquelas tentativas, são utilizadas para fornecer caracterizações adicionais (principalmente caracterizações espectrais) para os quatro conceitos de estabilidade em questão.
This work deals with the stability problem for time- invariant discrete linear systems evolving in a separable infinite-dimensional Hilbert space. Necessary and/or sufficient conditions for uniform, strong and weak asymptotic stability, as well as to bounded stability problems to two open problems in operator theory, namely, the invariant subspace and the similarity to contractions, are identified and analysed in detail. Several results from the many attempts, of solving the above mentioned open problems, or motivated by those attempts, are used to supply additional characterizations (mainly spectral characterization) for the four stabilty concepts under consideration.
Sprungk, Björn. "Numerical Methods for Bayesian Inference in Hilbert Spaces". Doctoral thesis, Technische Universität Chemnitz, 2017. https://monarch.qucosa.de/id/qucosa%3A20754.
Texto completoBayessche Inferenz besteht daraus, vorhandenes a-priori Wissen über unsichere Parameter in mathematischen Modellen mit neuen Beobachtungen messbarer Modellgrößen zusammenzuführen. In dieser Dissertation beschäftigen wir uns mit Modellen, die durch partielle Differentialgleichungen beschrieben sind. Die unbekannten Parameter sind dabei Koeffizientenfunktionen, die aus einem unendlich dimensionalen Funktionenraum kommen. Das Resultat der Bayesschen Inferenz ist dann eine wohldefinierte a-posteriori Wahrscheinlichkeitsverteilung auf diesem Funktionenraum, welche das aktualisierte Wissen über den unsicheren Koeffizienten beschreibt. Für Entscheidungsverfahren oder Postprocessing ist es oft notwendig die a-posteriori Verteilung zu simulieren oder bzgl. dieser zu integrieren. Dies verlangt nach numerischen Verfahren, welche sich zur Simulation in unendlich dimensionalen Räumen eignen. In dieser Arbeit betrachten wir Kalmanfiltertechniken, die auf Ensembles oder polynomiellen Chaosentwicklungen basieren, sowie Markowketten-Monte-Carlo-Methoden. Wir analysieren die erwähnte Kalmanfilter, indem wir deren Konvergenz zeigen und ihre Anwendbarkeit im Kontext Bayesscher Inferenz diskutieren. Weiterhin entwickeln und studieren wir einen verbesserten dimensionsunabhängigen Metropolis-Hastings-Algorithmus. Hierbei weisen wir geometrische Ergodizität mit Hilfe eines neuen Resultates zum Vergleich der Spektrallücken von Markowketten nach. Zusätzlich beobachten und analysieren wir die Robustheit der neuen Methode bzgl. eines fallenden Beobachtungsfehlers. Diese Robustheit ist eine weitere wünschenswerte Eigenschaft numerischer Methoden für Bayessche Inferenz. Den Abschluss der Arbeit bildet die Anwendung der diskutierten Methoden auf ein reales Grundwasserproblem, was insbesondere den Bayesschen Zugang zur Unsicherheitsquantifizierung in der Praxis illustriert.
Giulini, Ilaria. "Generalization bounds for random samples in Hilbert spaces". Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0026/document.
Texto completoThis thesis focuses on obtaining generalization bounds for random samples in reproducing kernel Hilbert spaces. The approach consists in first obtaining non-asymptotic dimension-free bounds in finite-dimensional spaces using some PAC-Bayesian inequalities related to Gaussian perturbations and then in generalizing the results in a separable Hilbert space. We first investigate the question of estimating the Gram operator by a robust estimator from an i. i. d. sample and we present uniform bounds that hold under weak moment assumptions. These results allow us to qualify principal component analysis independently of the dimension of the ambient space and to propose stable versions of it. In the last part of the thesis we present a new algorithm for spectral clustering. It consists in replacing the projection on the eigenvectors associated with the largest eigenvalues of the Laplacian matrix by a power of the normalized Laplacian. This iteration, justified by the analysis of clustering in terms of Markov chains, performs a smooth truncation. We prove nonasymptotic bounds for the convergence of our spectral clustering algorithm applied to a random sample of points in a Hilbert space that are deduced from the bounds for the Gram operator in a Hilbert space. Experiments are done in the context of image analysis
Sorensen, Julian Karl. "White noise analysis and stochastic evolution equations". Title page, contents and abstract only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phs713.pdf.
Texto completoAgora, Elona. "Boundedness of the Hilbert Transform on Weighted Lorentz Spaces". Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/108930.
Texto completoTítol: Acotaciò de l'operador de Hilbert sobre espais de Lorentz amb pesos Resum: L'objectiu principal d'aquesta tesi es caracteritzar l'acotació de l'operador de Hilbert sobre els espais de Lorentz amb pesos Λpu(w). També estudiem la versió dèbil. La caracterització es dona en terminis de condicions geomètriques sobre els pesos u i w, i l'acotació de l'operador maximal de Hardy-Littlewood sobre els mateixos espais. Els nostres resultats unifiquen dues teories conegudes i aparentment no relacionades entre elles, que tracten l'acotació de l'operador de Hilbert sobre els espais de Lebegue amb pesos Lp(u) per una banda i els espais de Lorentz clàssics Λp(w) per altre banda.
ru, neretin@main mccme rssi. "Groups of Vassalomorphisms and Hilbert Spaces Associated with Trees". ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1047.ps.
Texto completoStruble, Dale William. "Wavelets on manifolds and multiscale reproducing kernel Hilbert spaces". Related electronic resource:, 2007. http://proquest.umi.com/pqdweb?did=1407687581&sid=1&Fmt=2&clientId=3739&RQT=309&VName=PQD.
Texto completoSaraivanov, Michael S. "Quantum Circuit Synthesis using Group Decomposition and Hilbert Spaces". Thesis, Portland State University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=1542568.
Texto completoThe exponential nature of Moore's law has inadvertently created huge data storage complexes that are scattered around the world. Data elements are continuously being searched, processed, erased, combined and transferred to other storage units without much regard to power consumption. The need for faster searches and power efficient data processing is becoming a fundamental requirement. Quantum computing may offer an elegant solution to speed and power through the utilization of the natural laws of quantum mechanics. Therefore, minimal cost quantum circuit implementation methodologies are greatly desired.
This thesis explores the decomposition of group functions and the Walsh spectrum for implementing quantum canonical cascades with minimal cost. Three different methodologies, using group decomposition, are presented and generalized to take advantage of different quantum computing hardware, such as ion traps and quantum dots. Quantum square root of swap gates and fixed angle rotation gates comprise the first two methodologies. The third and final methodology provides further quantum cost reduction by more efficiently utilizing Hilbert spaces through variable angle rotation gates. The thesis then extends the methodology to realize a robust quantum circuit synthesis tool for single and multi-output quantum logic functions.
Linder, Kevin A. (Kevin Andrew). "Spectral multiplicity theory in nonseparable Hilbert spaces : a survey". Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60478.
Texto completoMcKain, David. "Transference and the Hilbert transform on Banach function spaces". Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/12628.
Texto completoQuiggin, Peter Philip. "Generalisations of Pick's theorem to reproducing Kernel Hilbert spaces". Thesis, Lancaster University, 1994. http://eprints.lancs.ac.uk/61962/.
Texto completoMarx, Gregory. "The Complete Pick Property and Reproducing Kernel Hilbert Spaces". Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/24783.
Texto completoMaster of Science
Kaldas, Hany Kamel Halim. "Relativistic Gamow vectors : state vectors for unstable particles /". Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004300.
Texto completoBoulton, Lyonell. "Topics in the spectral theory of non adjoint operators". Thesis, King's College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272412.
Texto completoHansmann, Marcel. "On the discrete spectrum of linear operators in Hilbert spaces". Clausthal-Zellerfeld Universitätsbibliothek Clausthal, 2010. http://d-nb.info/1001898664/34.
Texto completoGiménez, Febrer Pere Joan. "Matrix completion with prior information in reproducing kernel Hilbert spaces". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671718.
Texto completoA matrix completion, l'objectiu és recuperar una matriu a partir d'un subconjunt d'entrades observables. Els mètodes més eficaços es basen en la idea que la matriu desconeguda és de baix rang. Al ser de baix rang, les seves entrades són funció d'uns pocs coeficients que poden ser estimats sempre que hi hagi suficients observacions. Així, a matrix completion la solució s'obté com la matriu de mínim rang que millor s'ajusta a les entrades visibles. A més de baix rang, la matriu desconeguda pot tenir altres propietats estructurals que poden ser aprofitades en el procés de recuperació. En una matriu suau, pot esperar-se que les entrades en posicions pròximes tinguin valor similar. Igualment, grups de columnes o files poden saber-se similars. Aquesta informació relacional es proporciona a través de diversos mitjans com ara matrius de covariància o grafs, amb l'inconvenient que aquests no poden ser derivats a partir de la matriu de dades ja que està incompleta. Aquesta tesi tracta sobre matrix completion amb informació prèvia, i presenta metodologies que poden aplicar-se a diverses situacions. En la primera part, les columnes de la matriu desconeguda s'identifiquen com a senyals en un graf conegut prèviament. Llavors, la matriu d'adjacència del graf s'usa per calcular un punt inicial per a un algorisme de gradient pròxim amb la finalitat de reduir les iteracions necessàries per arribar a la solució. Després, suposant que els senyals són suaus, la matriu laplaciana del graf s'incorpora en la formulació del problema amb tal forçar suavitat en la solució. Això resulta en una reducció de soroll en la matriu observada i menor error, la qual cosa es demostra a través d'anàlisi teòrica i simulacions numèriques. La segona part de la tesi introdueix eines per a aprofitar informació prèvia mitjançant reproducing kernel Hilbert spaces. Atès que un kernel mesura la similitud entre dos punts en un espai, permet codificar qualsevol tipus d'informació tal com vectors de característiques, diccionaris o grafs. En associar cada columna i fila de la matriu desconeguda amb un element en un set, i definir un parell de kernels que mesuren similitud entre columnes o files, les entrades desconegudes poden ser extrapolades mitjançant les funcions de kernel. Es presenta un mètode basat en regressió amb kernels, amb dues variants addicionals que redueixen el cost computacional. Els mètodes proposats es mostren competitius amb tècniques existents, especialment quan el nombre d'observacions és molt baix. A més, es detalla una anàlisi de l'error quadràtic mitjà i l'error de generalització. Per a l'error de generalització, s'adopta el context transductiu, el qual mesura la capacitat d'un algorisme de transferir informació d'un set de mostres etiquetades a un set no etiquetat. Després, es deriven cotes d'error per als algorismes proposats i existents fent ús de la complexitat de Rademacher, i es presenten proves numèriques que confirmen els resultats teòrics. Finalment, la tesi explora la qüestió de com triar les entrades observables de la matriu per a minimitzar l'error de recuperació de la matriu completa. Una estratègia de mostrejat passiva és proposada, la qual implica que no és necessari conèixer cap etiqueta per a dissenyar la distribució de mostreig. Només les funcions de kernel són necessàries. El mètode es basa en construir la millor aproximació de Nyström a la matriu de kernel mostrejant les columnes segons la seva leverage score, una mètrica que apareix de manera natural durant l'anàlisi teòric.
Sinha, Suddhasattwa. "Coherent control of dipolar coupled spins in large Hilbert spaces". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/41278.
Texto completoIncludes bibliographical references (p. 101-106).
Controlling the dynamics of a dipolar-coupled spin system is critical to the development of solid-state spin-based quantum information processors. Such control remains challenging, as every spin is coupled to a large number of surrounding spins. In this thesis, we primarily focus on developing coherent control techniques for such large spin systems. We start by experimentally simulating spin squeezing using a liquid-state NMR quantum information processor. We demonstrate that the precision of quantum control obtained using strongly modulating pulses was sufficient to reproduce the theoretically expected behavior of the spin observables and the associated entanglement measures among the underlying qubits. We then investigate coherent control in a more complex solid-state spin system consisting of an ensemble of spin pairs. Using pulse amplitude modulation techniques, we decouple the weaker interactions between different pairs and extend the coherence lifetimes within the two-spin system. This is achieved without decoupling the stronger interaction between the two spins within a pair. We thus demonstrated that it is possible to restrict the evolution of a dipolar coupled spin network to a much smaller subspace of the system Hilbert space which allows us to significantly extend the phase coherence times for selected states. Finally, we demonstrate the sensitivity of highly correlated multiple-quantum states to the presence of rare spin defects in a solid-state spin system.
(cont.) We design two multiple-pulse control sequences - one that suspends all spin interactions in the system including that of the defect spins, while the other selectively allows the defect spins to interact only with the abundant spins. By measuring the effective relaxation time of the rare spins, we demonstrate the efficiency of the two control sequences. Furthermore we observe that for small spin cluster sizes, the sensitivity of the highly correlated spin states to the spin defects depends on the coherence order of these correlated spin states. But beyond a certain cluster size, one observes a saturation effect as the higher coherence orders are no longer increasingly sensitive to the defect spin dynamics.
by Suddhasattwa Sinha.
Ph.D.
Thompson, Kinney. "Frames for Hilbert spaces and an application to signal processing". VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2735.
Texto completoZandler, Andersson Nils. "Boundedness of a Class of Hilbert Operators on Modulation Spaces". Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-84932.
Texto completoKhalil, Asma Mohammed. "Structure of scalar-type operators on Lp spaces and well-bounded operators on Hilbert spaces". Thesis, University of Edinburgh, 2002. http://hdl.handle.net/1842/10983.
Texto completoBecker, Tanja. "Moduli spaces of (G,h)-constellations". Nantes, 2011. http://www.theses.fr/2011NANT2073.
Texto completoGiven a reductive group G acting on an a#ne scheme X over C and a Hilbert function h: IrrG ! N0, we construct the moduli space M#(X) of ##stable (G; h)#constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion [AB05] and the moduli space of ##stable G#constellations for #nite groups G introduced by Craw and Ishii [CI04]. Our construction of a morphism M#(X) ! X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero #bre of the moment map of an action of Sl2 on (C2)#6 as one of the #rst examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action
Van, Tuyl Adam Leonard. "Sets of points in multi-projective spaces and their Hilbert function". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ63465.pdf.
Texto completoWickramasekara, Sujeewa. "Differentiable representations of finite dimensional lie groups in rigged Hilbert spaces /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Texto completoWickramasekara, Sujeewa y sujeewa@physics utexas edu. "Symmetry Representations in the Rigged Hilbert Space Formulation of". ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi993.ps.
Texto completoAllen, Cristian Gerardo. "A Classification of the Homogeneity of Countable Products of Subsets of Real Numbers". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011753/.
Texto completoHofmann, B. y O. Scherzer. "Local Ill-Posedness and Source Conditions of Operator Equations in Hilbert Spaces". Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800957.
Texto completoKotsakis, Christophoros. "Multiresolution aspects of linear approximation methods in Hilbert spaces using gridded data". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0016/NQ54794.pdf.
Texto completoHansmann, Marcel [Verfasser]. "On the discrete spectrum of linear operators in Hilbert spaces / Marcel Hansmann". Clausthal-Zellerfeld : Universitätsbibliothek Clausthal, 2010. http://d-nb.info/1001898664/34.
Texto completoMaruhn, Jan Hendrik. "An augmented Lagrangian algorithm for optimization with equality constraints in Hilbert spaces". Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/32098.
Texto completoMaster of Science
Srithharan, T. "Theory and applications of Hilbert's and Thompson's metrics to positive operators in ordered spaces". Thesis, University of Sussex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262302.
Texto completoChui, Nelson Loong Chik. "Subspace methods and informative experiments for system identification". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298794.
Texto completoSantiago, Landerson Bezerra. "O nÃcleo do calor em uma variedade riemanniana". Universidade Federal do CearÃ, 2011. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5674.
Texto completoIn a connected and compact Riemannian Manifold we will introduce the concept of spectre of Laplace operator. Using the existence and unicity of the heat kernel in Riemannian manifold we proof the Hodge composition theorem. This theorem states that the Hilbert space L2(M, g) decompose in direct sum of subspaces with finite dimesion, where each subspace is the eigen-space relative of a eigenvalue of the laplacian. Furthermore, the eigenvalues form a nonnegative sequence the accumulate only in the infinity. After that we begin the construction of the heat kernel and, finally, we show that two isospetral Riemannian manifolds have the same volume.
Hofmann, B. "On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces". Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801185.
Texto completoMontgomery, Jason W. "Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation". Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc699977/.
Texto completoPaiva, António R. C. "Reproducing kernel Hilbert spaces for point processes, with applications to neural activity analysis". [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022471.
Texto completoBhujwalla, Yusuf. "Nonlinear System Identification with Kernels : Applications of Derivatives in Reproducing Kernel Hilbert Spaces". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0315/document.
Texto completoThis thesis will focus exclusively on the application of kernel-based nonparametric methods to nonlinear identification problems. As for other nonlinear methods, two key questions in kernel-based identification are the questions of how to define a nonlinear model (kernel selection) and how to tune the complexity of the model (regularisation). The following chapter will discuss how these questions are usually dealt with in the literature. The principal contribution of this thesis is the presentation and investigation of two optimisation criteria (one existing in the literature and one novel proposition) for structural approximation and complexity tuning in kernel-based nonlinear system identification. Both methods are based on the idea of incorporating feature-based complexity constraints into the optimisation criterion, by penalising derivatives of functions. Essentially, such methods offer the user flexibility in the definition of a kernel function and the choice of regularisation term, which opens new possibilities with respect to how nonlinear models can be estimated in practice. Both methods bear strong links with other methods from the literature, which will be examined in detail in Chapters 2 and 3 and will form the basis of the subsequent developments of the thesis. Whilst analogy will be made with parallel frameworks, the discussion will be rooted in the framework of Reproducing Kernel Hilbert Spaces (RKHS). Using RKHS methods will allow analysis of the methods presented from both a theoretical and a practical point-of-view. Furthermore, the methods developed will be applied to several identification ‘case studies’, comprising of both simulation and real-data examples, notably: • Structural detection in static nonlinear systems. • Controlling smoothness in LPV models. • Complexity tuning using structural penalties in NARX systems. • Internet traffic modelling using kernel methods