Literatura académica sobre el tema "Hilbert spaces"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hilbert spaces".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hilbert spaces"
Sharma, Sumit Kumar y Shashank Goel. "Frames in Quaternionic Hilbert Spaces". Zurnal matematiceskoj fiziki, analiza, geometrii 15, n.º 3 (25 de junio de 2019): 395–411. http://dx.doi.org/10.15407/mag15.03.395.
Texto completoBellomonte, Giorgia y Camillo Trapani. "Rigged Hilbert spaces and contractive families of Hilbert spaces". Monatshefte für Mathematik 164, n.º 3 (8 de octubre de 2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.
Texto completoSánchez, Félix Cabello. "Twisted Hilbert spaces". Bulletin of the Australian Mathematical Society 59, n.º 2 (abril de 1999): 177–80. http://dx.doi.org/10.1017/s0004972700032792.
Texto completoCHITESCU, ION, RAZVAN-CORNEL SFETCU y OANA COJOCARU. "Kothe-Bochner spaces that are Hilbert spaces". Carpathian Journal of Mathematics 33, n.º 2 (2017): 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.
Texto completoPisier, Gilles. "Weak Hilbert Spaces". Proceedings of the London Mathematical Society s3-56, n.º 3 (mayo de 1988): 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.
Texto completoFabian, M., G. Godefroy, P. Hájek y V. Zizler. "Hilbert-generated spaces". Journal of Functional Analysis 200, n.º 2 (junio de 2003): 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.
Texto completoRudolph, Oliver. "Super Hilbert Spaces". Communications in Mathematical Physics 214, n.º 2 (noviembre de 2000): 449–67. http://dx.doi.org/10.1007/s002200000281.
Texto completoNg, Chi-Keung. "Topologized Hilbert spaces". Journal of Mathematical Analysis and Applications 418, n.º 1 (octubre de 2014): 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.
Texto completovan den Boogaart, Karl Gerald, Juan José Egozcue y Vera Pawlowsky-Glahn. "Bayes Hilbert Spaces". Australian & New Zealand Journal of Statistics 56, n.º 2 (junio de 2014): 171–94. http://dx.doi.org/10.1111/anzs.12074.
Texto completoSchmitt, L. M. "Semidiscrete Hilbert spaces". Acta Mathematica Hungarica 53, n.º 1-2 (marzo de 1989): 103–7. http://dx.doi.org/10.1007/bf02170059.
Texto completoTesis sobre el tema "Hilbert spaces"
Wigestrand, Jan. "Inequalities in Hilbert Spaces". Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9673.
Texto completoThe main result in this thesis is a new generalization of Selberg's inequality in Hilbert spaces with a proof. In Chapter 1 we define Hilbert spaces and give a proof of the Cauchy-Schwarz inequality and the Bessel inequality. As an example of application of the Cauchy-Schwarz inequality and the Bessel inequality, we give an estimate for the dimension of an eigenspace of an integral operator. Next we give a proof of Selberg's inequality including the equality conditions following [Furuta]. In Chapter 2 we give selected facts on positive semidefinite matrices with proofs or references. Then we use this theory for positive semidefinite matrices to study inequalities. First we give a proof of a generalized Bessel inequality following [Akhiezer,Glazman], then we use the same technique to give a new proof of Selberg's inequality. We conclude with a new generalization of Selberg's inequality with a proof. In the last section of Chapter 2 we show how the matrix approach developed in Chapter 2.1 and Chapter 2.2 can be used to obtain optimal frame bounds. We introduce a new notation for frame bounds.
Ameur, Yacin. "Interpolation of Hilbert spaces". Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1753.
Texto completoAmeur, Yacin. "Interpolation of Hilbert spaces /". Uppsala : Matematiska institutionen, Univ. [distributör], 2001. http://publications.uu.se/theses/91-506-1531-9/.
Texto completoPanayotov, Ivo. "Conjugate gradient in Hilbert spaces". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82402.
Texto completoBahmani, Fatemeh. "Ternary structures in Hilbert spaces". Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/697.
Texto completoDas, Tushar. "Kleinian Groups in Hilbert Spaces". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149579/.
Texto completoHarris, Terri Joan Mrs. "HILBERT SPACES AND FOURIER SERIES". CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/244.
Texto completoDieuleveut, Aymeric. "Stochastic approximation in Hilbert spaces". Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE059/document.
Texto completoThe goal of supervised machine learning is to infer relationships between a phenomenon one seeks to predict and “explanatory” variables. To that end, multiple occurrences of the phenomenon are observed, from which a prediction rule is constructed. The last two decades have witnessed the apparition of very large data-sets, both in terms of the number of observations (e.g., in image analysis) and in terms of the number of explanatory variables (e.g., in genetics). This has raised two challenges: first, avoiding the pitfall of over-fitting, especially when the number of explanatory variables is much higher than the number of observations; and second, dealing with the computational constraints, such as when the mere resolution of a linear system becomes a difficulty of its own. Algorithms that take their roots in stochastic approximation methods tackle both of these difficulties simultaneously: these stochastic methods dramatically reduce the computational cost, without degrading the quality of the proposed prediction rule, and they can naturally avoid over-fitting. As a consequence, the core of this thesis will be the study of stochastic gradient methods. The popular parametric methods give predictors which are linear functions of a set ofexplanatory variables. However, they often result in an imprecise approximation of the underlying statistical structure. In the non-parametric setting, which is paramount in this thesis, this restriction is lifted. The class of functions from which the predictor is proposed depends on the observations. In practice, these methods have multiple purposes, and are essential for learning with non-vectorial data, which can be mapped onto a vector in a functional space using a positive definite kernel. This allows to use algorithms designed for vectorial data, but requires the analysis to be made in the non-parametric associated space: the reproducing kernel Hilbert space. Moreover, the analysis of non-parametric regression also sheds some light on the parametric setting when the number of predictors is much larger than the number of observations. The first contribution of this thesis is to provide a detailed analysis of stochastic approximation in the non-parametric setting, precisely in reproducing kernel Hilbert spaces. This analysis proves optimal convergence rates for the averaged stochastic gradient descent algorithm. As we take special care in using minimal assumptions, it applies to numerous situations, and covers both the settings in which the number of observations is known a priori, and situations in which the learning algorithm works in an on-line fashion. The second contribution is an algorithm based on acceleration, which converges at optimal speed, both from the optimization point of view and from the statistical one. In the non-parametric setting, this can improve the convergence rate up to optimality, even inparticular regimes for which the first algorithm remains sub-optimal. Finally, the third contribution of the thesis consists in an extension of the framework beyond the least-square loss. The stochastic gradient descent algorithm is analyzed as a Markov chain. This point of view leads to an intuitive and insightful interpretation, that outlines the differences between the quadratic setting and the more general setting. A simple method resulting in provable improvements in the convergence is then proposed
Boralugoda, Sanath Kumara. "Prox-regular functions in Hilbert spaces". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0006/NQ34740.pdf.
Texto completoLapinski, Felicia. "Hilbert spaces and the Spectral theorem". Thesis, Uppsala universitet, Analys och sannolikhetsteori, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-454412.
Texto completoLibros sobre el tema "Hilbert spaces"
Gaussian Hilbert spaces. Cambridge, U.K: Cambridge University Press, 1997.
Buscar texto completoDebnath, Lokenath. Hilbert spaces with applications. 3a ed. Oxford: Academic, 2005.
Buscar texto completoMlak, W. Hilbert spaces and operator theory. Dordrecht: Boston, 1991.
Buscar texto completoMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Buscar texto completoMashreghi, Javad. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Buscar texto completoJavad, Mashreghi, Ransford Thomas y Seip Kristian 1962-, eds. Hilbert spaces of analytic functions. Providence, R.I: American Mathematical Society, 2010.
Buscar texto completoBanach-Hilbert spaces, vector measures, and group representations. River Edge, NJ: World Scientific, 2002.
Buscar texto completoSarason, Donald. Sub-Hardy Hilbert spaces in the unit disk. New York: Wiley, 1994.
Buscar texto completoSimon, Jacques. Banach, Fréchet, Hilbert and Neumann Spaces. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119426516.
Texto completo1964-, McCarthy John E., ed. Pick interpolation and Hilbert function spaces. Providence, R.I: American Mathematical Society, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Hilbert spaces"
D’Angelo, John P. "Hilbert Spaces". En Hermitian Analysis, 45–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8526-1_2.
Texto completoRoman, Steven. "Hilbert Spaces". En Advanced Linear Algebra, 263–90. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_14.
Texto completoOvchinnikov, Sergei. "Hilbert Spaces". En Universitext, 149–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91512-8_7.
Texto completoCicogna, Giampaolo. "Hilbert Spaces". En Undergraduate Lecture Notes in Physics, 1–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76165-7_1.
Texto completoGasquet, Claude y Patrick Witomski. "Hilbert Spaces". En Texts in Applied Mathematics, 141–52. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1598-1_16.
Texto completoKomornik, Vilmos. "Hilbert Spaces". En Lectures on Functional Analysis and the Lebesgue Integral, 3–54. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6811-9_1.
Texto completoShima, Hiroyuki y Tsuneyoshi Nakayama. "Hilbert Spaces". En Higher Mathematics for Physics and Engineering, 73–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/b138494_4.
Texto completovan der Vaart, Aad W. y Jon A. Wellner. "Hilbert Spaces". En Weak Convergence and Empirical Processes, 49–51. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2545-2_8.
Texto completoBrokate, Martin y Götz Kersting. "Hilbert Spaces". En Compact Textbooks in Mathematics, 137–52. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15365-0_12.
Texto completoKubrusly, Carlos S. "Hilbert Spaces". En Elements of Operator Theory, 311–440. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4757-3328-0_5.
Texto completoActas de conferencias sobre el tema "Hilbert spaces"
RANDRIANANTOANINA, BEATA. "A CHARACTERIZATION OF HILBERT SPACES". En Proceedings of the Sixth Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704450_0021.
Texto completoTaddei, Valentina, Luisa Malaguti y Irene Benedetti. "Nonlocal problems in Hilbert spaces". En The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0103.
Texto completoTang, Wai-Shing. "Biorthogonality and multiwavelets in Hilbert spaces". En International Symposium on Optical Science and Technology, editado por Akram Aldroubi, Andrew F. Laine y Michael A. Unser. SPIE, 2000. http://dx.doi.org/10.1117/12.408620.
Texto completoPope, Graeme y Helmut Bolcskei. "Sparse signal recovery in Hilbert spaces". En 2012 IEEE International Symposium on Information Theory - ISIT. IEEE, 2012. http://dx.doi.org/10.1109/isit.2012.6283506.
Texto completoMałkiewicz, Przemysław. "Physical Hilbert spaces in quantum gravity". En Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0514.
Texto completoKhimshiashvili, G. "Loop spaces and Riemann-Hilbert problems". En Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-19.
Texto completoDeepshikha, Saakshi Garg, Lalit K. Vashisht y Geetika Verma. "On weaving fusion frames for Hilbert spaces". En 2017 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2017. http://dx.doi.org/10.1109/sampta.2017.8024363.
Texto completoGritsutenko, Stanislav, Elina Biberdorf y Rui Dinis. "On the Sampling Theorem in Hilbert Spaces". En Computer Graphics and Imaging. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.798-012.
Texto completoTuia, Devis, Gustavo Camps-Valls y Manel Martinez-Ramon. "Explicit recursivity into reproducing kernel Hilbert spaces". En ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947266.
Texto completoSUQUET, CHARLES. "REPRODUCING KERNEL HILBERT SPACES AND RANDOM MEASURES". En Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0013.
Texto completoInformes sobre el tema "Hilbert spaces"
Saraivanov, Michael. Quantum Circuit Synthesis using Group Decomposition and Hilbert Spaces. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.1108.
Texto completoKorezlioglu, H. y C. Martias. Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1986. http://dx.doi.org/10.21236/ada168501.
Texto completoFukumizu, Kenji, Francis R. Bach y Michael I. Jordan. Dimensionality Reduction for Supervised Learning With Reproducing Kernel Hilbert Spaces. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2003. http://dx.doi.org/10.21236/ada446572.
Texto completoTeolis, Anthony. Discrete Representation of Signals from Infinite Dimensional Hilbert Spaces with Application to Noise Suppression and Compression. Fort Belvoir, VA: Defense Technical Information Center, enero de 1993. http://dx.doi.org/10.21236/ada453215.
Texto completoSalamon, Dietmar. Realization Theory in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, julio de 1985. http://dx.doi.org/10.21236/ada158172.
Texto completoYao, Jen-Chih. A monotone complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), abril de 1990. http://dx.doi.org/10.2172/7043013.
Texto completoYao, Jen-Chih. A generalized complementarity problem in Hilbert space. Office of Scientific and Technical Information (OSTI), marzo de 1990. http://dx.doi.org/10.2172/6930669.
Texto completoCottle, Richard W. y Jen-Chih Yao. Pseudo-Monotone Complementarity Problems in Hilbert Space. Fort Belvoir, VA: Defense Technical Information Center, julio de 1990. http://dx.doi.org/10.21236/ada226477.
Texto completoKallianpur, G. y V. Perez-Abreu. Stochastic Evolution Equations with Values on the Dual of a Countably Hilbert Nuclear Space. Fort Belvoir, VA: Defense Technical Information Center, julio de 1986. http://dx.doi.org/10.21236/ada174876.
Texto completoMonrad, D. y W. Philipp. Nearby Variables with Nearby Conditional Laws and a Strong Approximation Theorem for Hilbert Space Valued Martingales. Fort Belvoir, VA: Defense Technical Information Center, abril de 1989. http://dx.doi.org/10.21236/ada225992.
Texto completo