Literatura académica sobre el tema "High-Resolution X-Ray imaging"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "High-Resolution X-Ray imaging".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "High-Resolution X-Ray imaging"
Huang, Wenjun, Junyu Chen, Yi Li, Yueyue Wu, Lianjie Li, Liping Chen y Hai Guo. "Tb3+-doped borosilicate glass scintillators for high-resolution X-ray imaging". Chinese Optics Letters 21, n.º 7 (2023): 071601. http://dx.doi.org/10.3788/col202321.071601.
Texto completoStrüder, L. "High-resolution imaging X-ray spectrometers". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 454, n.º 1 (noviembre de 2000): 73–113. http://dx.doi.org/10.1016/s0168-9002(00)00811-1.
Texto completoSi, Haoxuan, Lianqiang Shan, Huiyao Du, Li Jiang, Shengzhen Yi, Weimin Zhou y Zhanshan Wang. "High-resolution Mo Kα X-ray monochromatic backlight imaging using a toroidal crystal". Chinese Optics Letters 21, n.º 10 (2023): 103401. http://dx.doi.org/10.3788/col202321.103401.
Texto completoCarpenter, D. A. y M. A. Taylor. "Fast, High-Resolution X-ray Microfluorescence Imaging". Advances in X-ray Analysis 34 (1990): 217–21. http://dx.doi.org/10.1154/s0376030800014506.
Texto completoOu, Xiangyu, Xian Qin, Bolong Huang, Jie Zan, Qinxia Wu, Zhongzhu Hong, Lili Xie et al. "High-resolution X-ray luminescence extension imaging". Nature 590, n.º 7846 (17 de febrero de 2021): 410–15. http://dx.doi.org/10.1038/s41586-021-03251-6.
Texto completoFewster, Paul F., Marina V. Baidakova y Reginald Kyutt. "High-resolution X-ray diffraction and imaging". Journal of Applied Crystallography 46, n.º 4 (18 de julio de 2013): 841. http://dx.doi.org/10.1107/s0021889813016415.
Texto completoSchulman, Eric y Joel N. Bregman. "High-resolution X-ray imaging of M33". Astrophysical Journal 441 (marzo de 1995): 568. http://dx.doi.org/10.1086/175383.
Texto completoSchopper, Florian, J. Ninkovic, R. Richter, G. Schaller, T. Selle y J. Treis. "High resolution X-ray imaging with pnCCDs". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 (diciembre de 2018): 11–15. http://dx.doi.org/10.1016/j.nima.2017.10.004.
Texto completoStrueder, L. "High resolution imaging silicon-x-ray spectrometers". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 522, n.º 1-2 (abril de 2004): 146. http://dx.doi.org/10.1016/j.nima.2004.01.034.
Texto completoPLOURABOUE, F., P. CLOETENS, C. FONTA, A. STEYER, F. LAUWERS y J. P. MARC-VERGNES. "X-ray high-resolution vascular network imaging". Journal of Microscopy 215, n.º 2 (agosto de 2004): 139–48. http://dx.doi.org/10.1111/j.0022-2720.2004.01362.x.
Texto completoTesis sobre el tema "High-Resolution X-Ray imaging"
Bykova, Iuliia [Verfasser] y Gisela [Akademischer Betreuer] Schütz. "High-resolution X-ray ptychography for magnetic imaging / Iuliia Bykova ; Betreuer: Gisela Schütz". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2018. http://d-nb.info/1172717419/34.
Texto completoMcRae, Reagan. "Investigating metal homeostasis in mammalian cells using high resolution imaging techniques". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41197.
Texto completoStephan, Sandra. "High-Resolution 3D Ptychography". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113219.
Texto completoKohärente Bildgebung ist eine vielversprechende Methode der Röntgenmikroskopie. Sie ermöglicht die zerstörungsfreie Bestimmung der inneren Struktur von strahlenharten Untersuchungsobjekten mit einer räumlichen Auflösung, die im Prinzip nur von der integralen Anzahl der Photonen auf der Probe sowie deren Streukraft abhängt. Letztendlich stellt die Wellenlänge der verwendeten Röntgenstrahlung eine Grenze für die erreichbare räumliche Auflösung dar. Die Kombination der kohärenten Bildgebung mit der Rastermikroskopie zur sogenannten Ptychographie eröffnet die Möglichkeit, auch ausgedehnte Objekte mit hoher Auflösung zu untersuchen. Dabei wird die Probe mit einem räumlich begrenzten, kohärenten Röntgenstrahl abgerastert und an jedem Rasterpunkt ein Beugungsbild von einer im Fernfeld platzierten Beugungskamera registriert. Die Beleuchtungen benachbarter Rasterpunkte müssen dabei zu einem bestimmten Prozentsatz überlappen, um genügend Informationen für eine anschließende computergestützte und eindeutige Rekonstruktion des Objektes sicherzustellen. Moderne Rekonstruktionsalgorithmen ermöglichen sogar die gleichzeitige Rekonstruktion der Transmissionsfunktion des Objektes und der Beleuchtungsfunktion des eintreffenden Röntgenstrahls. Die Verknüpfung der Ptychographie mit der Tomographie zur 3D-Ptychographie ist der nahe liegende Schritt, um nun auch die dreidimensionale innere Struktur von Objekten mit hoher räumlicher Auflösung zu bestimmen. Die Projektionen an den verschiedenen Winkelpositionen der Probe werden dabei mittels ptychographischer Abrasterung der Probe erzeugt und anschließend der tomographischen Rekonstruktion zugrunde gelegt. In dieser Arbeit wird die Entwicklung der 3D-Ptychographie beschrieben. Das beinhaltet die Beschreibung der experimentellen Umgebung, der numerischen Implementierung des ptychographischen und des tomographischen Rekonstruktionsalgorithmus als auch eine detaillierte Darstellung der Durchführung der 3D-Ptychographie am Beispiel eines Experiments, welches unter Verwendung des modernen Nanoprobe-Aufbaus des Strahlrohres P06 am PETRA III Synchrotronring des DESY in Hamburg durchgeführt wurde. Als Untersuchungsobjekt diente dabei ein dünner Mo/UO2-Film, der ein vereinfachtes Modell für die in Reaktoren von Atomkraftwerken verbrauchten Brennstäbe darstellt und deshalb im Bereich des Umweltschutzes Anwendung findet. Die dreidimensionale Struktur der Probe wurde mit einer - für diese Methode bisher einmaligen - räumlichen Auflösung von 18 nm bestimmt. Die Messung des von der Probe kommenden Fluoreszenz-Signals an jedem Rasterpunkt der Ptychogramme ermöglichte zusätzlich die Bestimmung der zwei- und dreidimensionalen Elementverteilung innerhalb der Probe mit einer räumlichen Auflösung von 80 nm. Anhand der Fluoreszenzdaten konnte sowohl den Bereichen verschiedener Phasenschübe in den ptychographischen Rekonstruktionen der Objektphase als auch den verschiedenen Werten des Dekrementes des Brechungsindex in der tomographischen Rekonstruktion, das entsprechende chemische Element zugeordnet werden. Die erfolgreiche Demonstration der Durchführbarkeit der 3D-Ptychographie motiviert weitere zukünftige Anwendungen, z. B. auf dem Gebiet der Medizin, der Materialforschung und der physikalischen Grundlagenforschung
Ullherr, Maximilian [Verfasser] y Randolf [Gutachter] Hanke. "Optimization of Image Quality in High-Resolution X-Ray Imaging / Maximilian Ullherr ; Gutachter: Randolf Hanke". Würzburg : Universität Würzburg, 2021. http://d-nb.info/1230758577/34.
Texto completoFella, Christian [Verfasser] y Randolf [Gutachter] Hanke. "High-Resolution X-ray Imaging based on a Liquid-Metal-Jet-Source with and without X-ray Optics / Christian Fella ; Gutachter: Randolf Hanke". Würzburg : Universität Würzburg, 2017. http://d-nb.info/1132995809/34.
Texto completoSetlur, Nagesh Swetadri Vasan. "Improved imaging for x-ray guided interventions| A high resolution detector system and patient dose reduction technique". Thesis, State University of New York at Buffalo, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3613101.
Texto completoOver the past couple of decades there has been tremendous advancements in the field of medicine and engineering technology. Increases in the level of integration between these two branches of science has led to better understanding of physiology and anatomy of a living organism, thus allowing for better understanding of diseases along with their cures and treatments. The work presented in this dissertation aims at improving the imaging aspects of x-ray image guided interventions with endovascular image guided intervention as the primary area of application.
Minimally invasive treatments for neurovascular conditions such as aneurysms, stenosis, etc involve guidance of catheters to the treatment area, and deployment of treatment devices such as stents, coils, balloons, etc, all under x-ray image guidance. The features in these device are in the order of a few 10 µm's to a few 100 µm's and hence demand higher resolution imaging than the current state of the art flat panel detector. To address this issue three high resolution x-ray cameras were developed. The Micro Angiography Fluoroscope (MAF) based on a Charge Coupled Device (MAF-CCD), the MAF based on Complementary Metal Oxide Semiconductors (MAF-CMOS) and the Solid State X-ray Image Intensifier based on Electron Multiplying CCDs. The construction details along with performance evaluations are presented. The MAF-CCD was successfully used in a few interventions on human patient to treat neurovascular conditions, primarily aneurysm. Images acquired by the MAF-CCD during these procedures are presented.
A software platform CAPIDS was previously developed to facilitate the use of the high resolution MAF-CCD in a clinical environment. In this work the platform was modified to be used with any camera. The upgrades to CAPIDS, along with parallel programming including both the Graphics Processing Unit (GPU) and Central Processing Unit (CPU) are presented.
With increasing use of x-ray guidance for minimally invasive interventions, a major cause of concern is that of prolonged exposure to x-ray radiation that can cause biological damage to the patient. Hence during x-ray guided procedures necessary steps must be taken to minimize the dose to the patient. In this work a novel dose reduction technique, using a combination of Region of Interest (ROI) fluoroscopy to reduce dose along with spatially different temporal filtering to restore image quality is presented.
Finally a novel ROI imaging technique for biplane imaging in interventional suites, combining the use of high resolution detector along with dose reduction technique using ROI fluoroscopy with spatially different temporal filtering is presented.
Pedersen, Thomas Sunn 1970. "Edge plasma phenomena in the Alcator C-Mod tokamak measured by high resolution X-ray imaging diagnostics". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9025.
Texto completoIncludes bibliographical references (p. 203-206).
In this thesis high resolution soft x-ray measurements from the Alcator C-Mod plasma edge are presented for a variety of different plasma conditions. These measurements provide radial profiles of the soft x-ray emissivity with 1.5 mm resolution or better, and temporal resolution down to 12 [mu]s. These profiles show a distinct and very narrow pedestal shape in H-mode, indicative of the H-mode transport barrier. The soft x-ray emissivity pedestal at the outboard edge is typically 10 mm inside the last closed flux surface, near the top of the electron density and temperature pedestals. Modelling shows that the inward shift of the x-ray pedestal implies an inward shift of the impurity density pedestal. This inward shift is explained by an inward impurity pinch located in the region of strong electron density gradient, as predicted by neoclassical impurity transport theory. Calculations using the impurity transport code MIST support the existence of a neoclassical-like inward pinch. Changes in the soft x-ray pedestal width can be interpreted as changes in the edge impurity diffusion coefficient. We find several scaling laws of the edge diffusion coefficient with various plasma parameters in EDA H-mode. A second array views the top of the plasma. The x-ray emissivity measured with this array also shows a distinct and narrow pedestal in H-mode. However, it is located significantly closer to the separatrix and is often narrower. Both of these differences increase with the safety factor at the edge, q95 . Thus, there is a significant poloidal asymmetry in the impurity density in the H-mode edge region, which increases with q95 . Therefore, the impurity transport in the H-mode edge is highly two-dimensional. The strong poloidal asymmetries measured show some quantitative agreement with theories developed to explain poloidal impurity asymmetries. However, none of the theories are strictly applicable to the Alcator C-Mod edge, and they all significantly underestimate the actual asymmetries that we observe.
by Thomas Sunn Pedersen.
Ph.D.
Alaribe, Leonard [Verfasser] y Harald [Akademischer Betreuer] Hillebrecht. "Development of SrI2:Eu2+ - Scintillators for Gamma Ray spectroscopy and high resolution X-Ray imaging = Entwicklung von SrI2:Eu2+ - Szintillatoren für Gammastrahl-Spektroskopie und hochauflösende Röntgen-Bildgebung". Freiburg : Universität, 2013. http://d-nb.info/1115495089/34.
Texto completoBaier, Sina, Christian D. Damsgaard, Maria Scholz, Federico Benzi, Amélie Rochet, Robert Hoppe, Torsten Scherer et al. "In Situ Ptychography of Heterogeneous Catalysts using Hard X-Rays: High Resolution Imaging at Ambient Pressure and Elevated Temperature". Cambridge University Press, 2016. https://tud.qucosa.de/id/qucosa%3A70694.
Texto completoDe, cesare Cinzia. "Traitements numériques pour l’amélioration de la stabilité des détecteurs spectrométriques à fort flux pour l'imagerie X". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT084/document.
Texto completoThe emergence of CdTe Photon Counting Detectors (PCD) with energy discrimination capabilities, opens up new perspectives in X-ray imaging. Medical and security applications are characterized by very high X-ray fluxes and consequently require a very fast shaper in order to limit dead time losses due to pile-up. However, if the shaper is faster than the collection of the charges in the semiconductor, there is a loss of charge called ballistic deficit. Moreover, variations of the electric field profile in the detector over time cause a change in the collection time of the charges. As a result, the conversion gain of the detector will be affected by these variations. The instability of the response is visible over time as a channel shift of the spectra, resulting in a false information of the photon energy. The aim of this work is to characterize this instability in order to understand the mechanisms behind them and to develop a method to correct its effect. We proposed a correction algorithm based on the use of two Single Delay Line (SDL) shaping amplifiers. A fast SDL is used to measure the X-ray spectra at high count rates with limited count rate losses. A slow SDL is used to measure the full collected charge in order estimate a correction factor for the compensation of the ballistic deficit fluctuations of the fast SDL. An important step is to sort the processed pulses in order to reject pile-up and other undesirable effects that may degrade the measurement of the correction factor. The proposed method was implemented in an FPGA in order to correct the ballistic deficit in real-time and to give a stable response of the detector at very high fluxes. The method was tested with a 4x4 pixels detector (CdTe) of 3 mm thickness and 800 micron pitch, which is able to measure transmitted X-ray spectra in the energy range of 20-160 kV on 256 energy bins. The developed method was initially tested at low count rate with a Co-57 and an Am-241 gamma-ray sources, then at high count rates up to ~2 Mc/s with an X-ray source. With the characterization and the validation of this innovative algorithm we prove its ability in providing a stable response of the detector over time without affecting the energy resolution (~7% at 122 keV) and the dead time (~70 ns)
Libros sobre el tema "High-Resolution X-Ray imaging"
Conference on High Resolution X-ray Diffraction and Imaging (7th 2004 Prague, Czech Republic). Selected papers from XTOP 2004: 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging, Prague, 2-5 September 2004. Editado por Holý Václav 1953-. Bristol, UK: Institute of Physics Pub., 2005.
Buscar texto completoW, Deutsch Eric y United States. National Aeronautics and Space Administration., eds. Hubble Space Telescope imaging of bright galactic x-ray binaries in crowded fields. [Washington, DC: National Aeronautics and Space Administration, 1996.
Buscar texto completoKarthikeyan, D. High-resolution computed tomography of the lungs: A pattern approach. London: Hodder Arnold, 2005.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. [Development of high resolution imaging detectors for X ray astronomy]: [final report, 1 May 1982 - 30 Jun. 1991]. [Washington, DC: National Aeronautics and Space Administration, 1992.
Buscar texto completoJ, Swenson Stephen, ed. High resolution CT of the chest. Philadelphia: Lippincott, 1995.
Buscar texto completoStern, Eric J. High-resolution CT of the chest: Comprehensive atlas. Philadelphia: Lippincott-Raven, 1996.
Buscar texto completoJ, Swensen Stephen, ed. High-resolution CT of the chest: Comprehensive atlas. 2a ed. Philadelphia: Lippincott Williams & Wilkins, 2001.
Buscar texto completoStern, Eric J. High-resolution CT of the chest: Comprehensive atlas. 3a ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health, 2009.
Buscar texto completo1948-, Müller Nestor Luiz y Naidich David P, eds. High-resolution CT of the lung. 3a ed. Philadelphia: Lippincott Williams & Wilkins, 2001.
Buscar texto completo1948-, Müller Nestor Luiz y Naidich David P, eds. High-resolution CT of the lung. 2a ed. Philadelphia: Lippincott-Raven, 1996.
Buscar texto completoCapítulos de libros sobre el tema "High-Resolution X-Ray imaging"
Goldstein, Joseph I., Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott y David C. Joy. "High Resolution Imaging". En Scanning Electron Microscopy and X-Ray Microanalysis, 147–64. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6676-9_10.
Texto completoLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams et al. "High-Resolution SEM Imaging". En Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 61–66. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_11.
Texto completoLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams et al. "High-Resolution SEM Imaging". En Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 242–50. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_40.
Texto completoCarpenter, D. A. y M. A. Taylor. "Fast, High-Resolution X-Ray Microfluorescence Imaging". En Advances in X-Ray Analysis, 217–21. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3744-1_23.
Texto completoJacobsen, C., S. Lindaas y M. R. Howells. "X-Ray Holography Using Photoresists: High Resolution Lensless Imaging". En X-Ray Microscopy III, 244–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-46887-5_57.
Texto completoGolub, Leon. "Very High Resolution Solar X-ray Imaging". En Mechanisms of Chromospheric and Coronal Heating, 115–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87455-0_25.
Texto completoLehr, J. "High-Resolution Three-Dimensional Imaging with an X-Ray Microscope". En X-Ray Microscopy and Spectromicroscopy, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72106-9_8.
Texto completoBayat, Sam, Christian Dullin, Marcus J. Kitchen y Goran Lovric. "Synchrotron X-Ray-Based Functional and Anatomical Lung Imaging Techniques". En Advanced High-Resolution Tomography in Regenerative Medicine, 151–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00368-5_10.
Texto completoSaint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford y Brian Dennis. "Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution". En Handbook of X-ray and Gamma-ray Astrophysics, 1783–816. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-19-6960-7_170.
Texto completoSaint-Hilaire, Pascal, Albert Y. Shih, Gordon J. Hurford y Brian Dennis. "Grid-Based Imaging of X-rays and Gamma Rays with High Angular Resolution". En Handbook of X-ray and Gamma-ray Astrophysics, 1–34. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4544-0_170-1.
Texto completoActas de conferencias sobre el tema "High-Resolution X-Ray imaging"
Wood, O. R., J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, T. E. Jewell, W. M. Mansfield et al. "High Resolution Soft-X-Ray Projection Imaging". En Soft X-Ray Projection Lithography. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/sxray.1991.wb1.
Texto completoCash, Webster. "High resolution X-ray imaging". En SMALL MISSIONS FOR ENERGETIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1302219.
Texto completoWood, O. R., J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, T. E. Jewell, W. M. Mansfield et al. "High Resolution Soft-X-Ray Projection Imaging". En Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/swcr.1991.wb1.
Texto completoWan, A. S., L. B. Da Silva, T. W. Barbee, R. C. Cauble, P. Celliers, H. R. Lee, S. B. Libby et al. "Application of X-ray Lasers as Imaging and Plasma Diagnostics". En High Resolution Fourier Transform Spectroscopy. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/hrfts.1994.wb4.
Texto completoStreet, Robert A., Steve E. Ready, Jeffrey T. Rahn, Marcelo Mulato, Kanai S. Shah, Paul R. Bennett, Ping Mei et al. "High-resolution direct-detection x-ray imagers". En Medical Imaging 2000, editado por James T. Dobbins III y John M. Boone. SPIE, 2000. http://dx.doi.org/10.1117/12.384516.
Texto completoRoehrig, H., W. J. Dallas, T. W. Ovitt, R. D. Lamoreaux, R. Vercillo y K. M. McNeill. "A High Resolution X-Ray Imaging Devicm". En OE/LASE '89, editado por Illes P. Csorba. SPIE, 1989. http://dx.doi.org/10.1117/12.952543.
Texto completoLarsson, Jakob C., William Vågberg, Carmen Vogt, Ulf Lundström, Daniel H. Larsson y Hans M. Hertz. "High-spatial-resolution nanoparticle x-ray fluorescence tomography". En SPIE Medical Imaging, editado por Despina Kontos, Thomas G. Flohr y Joseph Y. Lo. SPIE, 2016. http://dx.doi.org/10.1117/12.2216770.
Texto completoKashyap, Y. S., A. Agrawal, P. S. Sarkar, Mayank Shukla, T. Roy, Amar Sinha, Dinesh K. Aswal y Anil K. Debnath. "High Resolution X-ray Microscopy For Nano-Resolution Imaging". En INTERNATIONAL CONFERENCE ON PHYSICS OF EMERGING FUNCTIONAL MATERIALS (PEFM-2010). AIP, 2010. http://dx.doi.org/10.1063/1.3530473.
Texto completoEschen, Wilhelm, Chang Liu, Daniel S. Penagos M., Robert Klas, Jens Limpert y Jan Rothhardt. "High-speed, high-resolution, and material-specific coherent EUV imaging using a high-order harmonic source". En Compact EUV & X-ray Light Sources. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/euvxray.2024.ew3a.4.
Texto completoBen Yehuda, A., O. Sefi, E. Cohen y S. Shwartz. "High-resolution Imaging with Scattered X-ray Radiation". En CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_at.2023.am4q.7.
Texto completoInformes sobre el tema "High-Resolution X-Ray imaging"
Silfvast, W. T. Simplified Ultra-High Resolution Optic for Soft-X-Ray Imaging. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1993. http://dx.doi.org/10.21236/ada278424.
Texto completoJing, Zhenxue. A High Resolution Scanning Slot X-Ray Imaging Detector for Digital Mammography. Fort Belvoir, VA: Defense Technical Information Center, junio de 1998. http://dx.doi.org/10.21236/ada363627.
Texto completoDiebold, Gerald J. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, junio de 2008. http://dx.doi.org/10.21236/ada488612.
Texto completoDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, junio de 2006. http://dx.doi.org/10.21236/ada457700.
Texto completoDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, junio de 2007. http://dx.doi.org/10.21236/ada472126.
Texto completoBitter, M., D. Gates, D. Monticello, H. Neilson, A. Reiman, A. Roquemore, S. Morita, M. Goto, H. Yamada y J. Rice. Objectives and Layout of a High-Resolution X-ray Imaging Crystal Spectrometer for the Large Helical Device (LHD). Office of Scientific and Technical Information (OSTI), julio de 2010. http://dx.doi.org/10.2172/984471.
Texto completoBitter, M., D. Gates, H. Neilson, A. Reiman, A. Roquemore, S. Morita, M. Goto, H. Yamada y J. Rice. Design Parameters and Objectives of a High-�Resolution X-�ray Imaging Crystal Spectrometer for the Large Helical Device (LHD). Office of Scientific and Technical Information (OSTI), mayo de 2010. http://dx.doi.org/10.2172/981706.
Texto completoPablant, N. A., L. Delgado-Apricio, M. Goto, K. W. Hill, S. Lzerson, S. Morita, A. L. Roquemore et al. Layout And Results From The Initial Operation Of The High-resolution X-ray Imaging Crystal Spectrometer On The Large Helical Device. Office of Scientific and Technical Information (OSTI), abril de 2012. http://dx.doi.org/10.2172/1063122.
Texto completoHill, K. W., Ch Broennimann, E. F. Eikenberry, A. Ince-Cushman, S. G. Lee, J. E. Rice y S. Scott. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas. Office of Scientific and Technical Information (OSTI), febrero de 2008. http://dx.doi.org/10.2172/960230.
Texto completoHill, K., Ch Broennimann, E. Eikenberry, A. Ince-Cushman, S. Lee, J. Rice, S. Scott y R. Barnsley. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas. Office of Scientific and Technical Information (OSTI), enero de 2008. http://dx.doi.org/10.2172/960413.
Texto completo