Literatura académica sobre el tema "High-performance, graph processing, GPU"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "High-performance, graph processing, GPU".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "High-performance, graph processing, GPU"
Zhou, Chao y Tao Zhang. "High Performance Graph Data Imputation on Multiple GPUs". Future Internet 13, n.º 2 (31 de enero de 2021): 36. http://dx.doi.org/10.3390/fi13020036.
Texto completoWang, Yangzihao, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel y John D. Owens. "Gunrock: a high-performance graph processing library on the GPU". ACM SIGPLAN Notices 50, n.º 8 (18 de diciembre de 2015): 265–66. http://dx.doi.org/10.1145/2858788.2688538.
Texto completoChoudhury, Dwaipayan, Aravind Sukumaran Rajam, Ananth Kalyanaraman y Partha Pratim Pande. "High-Performance and Energy-Efficient 3D Manycore GPU Architecture for Accelerating Graph Analytics". ACM Journal on Emerging Technologies in Computing Systems 18, n.º 1 (31 de enero de 2022): 1–19. http://dx.doi.org/10.1145/3482880.
Texto completoPan, Xiao Hui. "Efficient Graph Component Labeling on Hybrid CPU and GPU Platforms". Applied Mechanics and Materials 596 (julio de 2014): 276–79. http://dx.doi.org/10.4028/www.scientific.net/amm.596.276.
Texto completoLü, Yashuai, Hui Guo, Libo Huang, Qi Yu, Li Shen, Nong Xiao y Zhiying Wang. "GraphPEG". ACM Transactions on Architecture and Code Optimization 18, n.º 3 (junio de 2021): 1–24. http://dx.doi.org/10.1145/3450440.
Texto completoZhang, Yu, Da Peng, Xiaofei Liao, Hai Jin, Haikun Liu, Lin Gu y Bingsheng He. "LargeGraph". ACM Transactions on Architecture and Code Optimization 18, n.º 4 (31 de diciembre de 2021): 1–24. http://dx.doi.org/10.1145/3477603.
Texto completoSOMAN, JYOTHISH, KISHORE KOTHAPALLI y P. J. NARAYANAN. "SOME GPU ALGORITHMS FOR GRAPH CONNECTED COMPONENTS AND SPANNING TREE". Parallel Processing Letters 20, n.º 04 (diciembre de 2010): 325–39. http://dx.doi.org/10.1142/s0129626410000272.
Texto completoSeliverstov, E. Yu. "Structural Mapping of Global Optimization Algorithms to Graphics Processing Unit Architecture". Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, n.º 2 (139) (junio de 2022): 42–59. http://dx.doi.org/10.18698/0236-3933-2022-2-42-59.
Texto completoToledo, Leonel, Pedro Valero-Lara, Jeffrey S. Vetter y Antonio J. Peña. "Towards Enhancing Coding Productivity for GPU Programming Using Static Graphs". Electronics 11, n.º 9 (20 de abril de 2022): 1307. http://dx.doi.org/10.3390/electronics11091307.
Texto completoQuer, Stefano y Andrea Calabrese. "Graph Reachability on Parallel Many-Core Architectures". Computation 8, n.º 4 (2 de diciembre de 2020): 103. http://dx.doi.org/10.3390/computation8040103.
Texto completoTesis sobre el tema "High-performance, graph processing, GPU"
Segura, Salvador Albert. "High-performance and energy-efficient irregular graph processing on GPU architectures". Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/671449.
Texto completoEl processament de grafs és un domini prominent i establert com a la base de noves aplicacions emergents en àrees com l'anàlisi de dades i Machine Learning, que permeten aplicacions com ara navegació per carretera, xarxes socials i reconeixement automàtic de veu. La gran quantitat de dades emprades en aquests dominis requereix d’arquitectures d’alt rendiment, com ara GPGPU. Tot i que el processament de grans càrregues de treball basades en grafs presenta un alt grau de paral·lelisme, els patrons d’accés a la memòria tendeixen a ser irregulars, fet que redueix l’eficiència a causa de la divergència d’accessos a memòria. Per tal de millorar aquests problemes, les aplicacions de grafs per a GPGPU realitzen operacions de stream compaction que processen nodes/arestes per tal que els passos posteriors funcionin en un conjunt de dades compactat. Proposem deslliurar d’aquesta tasca a la extensió hardware Stream Compaction Unit (SCU) adaptada als requisits d’aquestes operacions, que a més realitza un pre-processament filtrant i reordenant els elements processats.Mostrem que les ineficiències de divergència de memòria prevalen en aplicacions GPGPU basades en grafs irregulars, tot i que trobem que és possible relaxar la relació estricta entre threads i les dades processades per obtenir noves optimitzacions. Com a tal, proposem la Irregular accesses Reorder Unit (IRU), una nova extensió de maquinari integrada al pipeline de la GPU que reordena i filtra les dades processades pels threads en accessos irregulars que milloren la convergència d’accessos a memòria. Finalment, aprofitem els punts forts de les propostes anteriors per aconseguir millores sinèrgiques. Ho fem proposant la IRU-enhanced SCU (ISCU), que utilitza els mecanismes de pre-processament eficients de la IRU per millorar l’eficiència de stream compaction de la SCU i les limitacions de rendiment de NoC a causa de les operacions de pre-processament de la SCU.
McLaughlin, Adam Thomas. "Power-constrained performance optimization of GPU graph traversal". Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50209.
Texto completoLee, Dongwon. "High-performance computer system architectures for embedded computing". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42766.
Texto completoSedaghati, Mokhtari Naseraddin. "Performance Optimization of Memory-Bound Programs on Data Parallel Accelerators". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1452255686.
Texto completoHong, Changwan. "Code Optimization on GPUs". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1557123832601533.
Texto completoHassan, Mohamed Wasfy Abdelfattah. "Using Workload Characterization to Guide High Performance Graph Processing". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103469.
Texto completoDoctor of Philosophy
Graph processing is a very important application domain, which is emphasized by the fact that many real-world problems can be represented as graph applications. For instance, looking at the internet, web pages can be represented as the graph vertices while hyper links between them represent the edges. Analyzing these types of graphs is used for web search engines, ranking websites, and network analysis among other uses. However, graph processing is computationally demanding and very challenging to optimize. This is due to the irregular nature of graph problems, which can be characterized by frequent indirect memory accesses. Such a memory access pattern is dependent on the data input and impossible to predict, which renders CPUs' sophisticated caching policies useless to performance. With the rise of heterogeneous computing that enabled using hardware accelerators, a new research area was born, attempting to maximize performance by utilizing the available hardware devices in a heterogeneous ecosystem. This dissertation aims to improve the efficiency of utilizing such heterogeneous systems when targeting graph applications. More specifically, this research focuses on the collaboration of CPUs and FPGAs (Field Programmable Gate Arrays) in a CPU-FPGA hybrid system. Innovative ideas are presented to exploit the strengths of each available device in such a heterogeneous system, as well as addressing some of the inherent challenges of graph processing. Automated frameworks are introduced to efficiently utilize the FPGA devices, in addition to distributing and scheduling the workload across multiple devices to maximize the performance of graph applications.
Smith, Michael Shawn. "Performance Analysis of Hybrid CPU/GPU Environments". PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/300.
Texto completoCyrus, Sam. "Fast Computation on Processing Data Warehousing Queries on GPU Devices". Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6214.
Texto completoMadduri, Kamesh. "A high-performance framework for analyzing massive complex networks". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24712.
Texto completoCommittee Chair: Bader, David; Committee Member: Berry, Jonathan; Committee Member: Fujimoto, Richard; Committee Member: Saini, Subhash; Committee Member: Vuduc, Richard
Hordemann, Glen J. "Exploring High Performance SQL Databases with Graphics Processing Units". Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1380125703.
Texto completoLibros sobre el tema "High-performance, graph processing, GPU"
Matt, Pharr y Fernando Randima, eds. GPU gems: Programming techniques for high- performance graphics and general-purpose computation. Upper Saddle River, NJ: Addison-Wesley, 2005.
Buscar texto completoMatt, Pharr y Fernando Randima, eds. GPU gems 2: Programming techniques for high- performance graphics and general-purpose computation. Upper Saddle River, NJ: Addison-Wesley, 2005.
Buscar texto completoYuen, David A. GPU Solutions to Multi-scale Problems in Science and Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoFernando, Randima y Matt Pharr. GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation (Gpu Gems). Addison-Wesley Professional, 2005.
Buscar texto completoGpu Solutions To Multiscale Problems In Science And Engineering. Springer, 2012.
Buscar texto completoGe, Wei, Lennart Johnsson, Long Wang, David A. Yuen, Xuebin Chi y Yaolin Shi. GPU Solutions to Multi-scale Problems in Science and Engineering. Springer, 2016.
Buscar texto completoCapítulos de libros sobre el tema "High-performance, graph processing, GPU"
Kaczmarski, Krzysztof, Piotr Przymus y Paweł Rzążewski. "Improving High-Performance GPU Graph Traversal with Compression". En Advances in Intelligent Systems and Computing, 201–14. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10518-5_16.
Texto completoSørensen, Hans Henrik Brandenborg. "High-Performance Matrix-Vector Multiplication on the GPU". En Euro-Par 2011: Parallel Processing Workshops, 377–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29737-3_42.
Texto completoSengupta, Dipanjan, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jeffrey Young, Matthew Wolf y Karsten Schwan. "GraphIn: An Online High Performance Incremental Graph Processing Framework". En Euro-Par 2016: Parallel Processing, 319–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43659-3_24.
Texto completoCabarle, Francis George, Henry Adorna, Miguel A. Martínez-del-Amor y Mario J. Pérez-Jiménez. "Spiking Neural P System Simulations on a High Performance GPU Platform". En Algorithms and Architectures for Parallel Processing, 99–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24669-2_10.
Texto completoPotluri, Sasanka, Alireza Fasih, Laxminand Kishore Vutukuru, Fadi Al Machot y Kyandoghere Kyamakya. "CNN Based High Performance Computing for Real Time Image Processing on GPU". En Autonomous Systems: Developments and Trends, 255–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24806-1_20.
Texto completoRubinpur, Yaniv y Sivan Toledo. "High-performance GPU and CPU Signal Processing for a Reverse-GPS Wildlife Tracking System". En Euro-Par 2020: Parallel Processing Workshops, 96–108. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71593-9_8.
Texto completoChu, Tianshu, Jian Dai, Depei Qian, Weiwei Fang y Yi Liu. "A Novel Scheme for High Performance Finite-Difference Time-Domain (FDTD) Computations Based on GPU". En Algorithms and Architectures for Parallel Processing, 441–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13119-6_38.
Texto completoChang, Dong, Yanfeng Zhang y Ge Yu. "MaiterStore: A Hot-Aware, High-Performance Key-Value Store for Graph Processing". En Database Systems for Advanced Applications, 117–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43984-5_9.
Texto completoBlas, Javier Garcia, Manuel F. Dolz, J. Daniel Garcia, Jesus Carretero, Alessandro Daducci, Yasser Aleman y Erick Jorge Canales-Rodriguez. "Porting Matlab Applications to High-Performance C++ Codes: CPU/GPU-Accelerated Spherical Deconvolution of Diffusion MRI Data". En Algorithms and Architectures for Parallel Processing, 630–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49583-5_49.
Texto completode Melo Menezes, Breno Augusto, Luis Filipe de Araujo Pessoa, Herbert Kuchen y Fernando Buarque De Lima Neto. "Parallelization Strategies for GPU-Based Ant Colony Optimization Applied to TSP". En Parallel Computing: Technology Trends. IOS Press, 2020. http://dx.doi.org/10.3233/apc200057.
Texto completoActas de conferencias sobre el tema "High-performance, graph processing, GPU"
Wang, Yangzihao, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel y John D. Owens. "Gunrock: a high-performance graph processing library on the GPU". En PPoPP '15: 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2688500.2688538.
Texto completoLai, Siyan, Guangda Lai, Guojun Shen, Jing Jin y Xiaola Lin. "GPregel: A GPU-Based Parallel Graph Processing Model". En 2015 IEEE 17th International Conference on High-Performance Computing and Communications; 2015 IEEE 7th International Symposium on Cyberspace Safety and Security; and 2015 IEEE 12th International Conference on Embedded Software and Systems. IEEE, 2015. http://dx.doi.org/10.1109/hpcc-css-icess.2015.184.
Texto completoHeldens, Stijn, Ana Lucia Varbanescu y Alexandru Iosup. "Dynamic Load Balancing for High-Performance Graph Processing on Hybrid CPU-GPU Platforms". En 2016 6th Workshop on Irregular Applications: Architecture and Algorithms (IA3). IEEE, 2016. http://dx.doi.org/10.1109/ia3.2016.016.
Texto completoGuo, Yong, Ana Lucia Varbanescu, Alexandru Iosup y Dick Epema. "An Empirical Performance Evaluation of GPU-Enabled Graph-Processing Systems". En 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, 2015. http://dx.doi.org/10.1109/ccgrid.2015.20.
Texto completoTang, Yu-Hang, Oguz Selvitopi, Doru Thom Popovici y Aydin Buluc. "A High-Throughput Solver for Marginalized Graph Kernels on GPU". En 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020. http://dx.doi.org/10.1109/ipdps47924.2020.00080.
Texto completoBulavintsev, Vadim y Dmitry Zhdanov. "Method for Adaptation of Algorithms to GPU Architecture". En 31th International Conference on Computer Graphics and Vision. Keldysh Institute of Applied Mathematics, 2021. http://dx.doi.org/10.20948/graphicon-2021-3027-930-941.
Texto completoBisson, Mauro y Massimiliano Fatica. "Static graph challenge on GPU". En 2017 IEEE High-Performance Extreme Computing Conference (HPEC). IEEE, 2017. http://dx.doi.org/10.1109/hpec.2017.8091034.
Texto completoGoodarzi, Bahareh, Farzad Khorasani, Vivek Sarkar y Dhrubajyoti Goswami. "High Performance Multilevel Graph Partitioning on GPU". En 2019 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2019. http://dx.doi.org/10.1109/hpcs48598.2019.9188120.
Texto completoBisson, Mauro y Massimiliano Fatica. "Update on Static Graph Challenge on GPU". En 2018 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2018. http://dx.doi.org/10.1109/hpec.2018.8547514.
Texto completoYang, Haoduo, Huayou Su, Mei Wen y Chunyuan Zhang. "HPGA: A High-Performance Graph Analytics Framework on the GPU". En 2018 International Conference on Information Systems and Computer Aided Education (ICISCAE). IEEE, 2018. http://dx.doi.org/10.1109/iciscae.2018.8666877.
Texto completo