Artículos de revistas sobre el tema "High frequency electronic devices"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "High frequency electronic devices".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Trew, R. J. "High-Frequency Solid-State Electronic Devices". IEEE Transactions on Electron Devices 52, n.º 5 (mayo de 2005): 638–49. http://dx.doi.org/10.1109/ted.2005.845862.
Texto completoZhao, Lan y Wen Lei Zhao. "Frequency Characteristics and Conversion of Microwave Photons". Applied Mechanics and Materials 568-570 (junio de 2014): 1303–6. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.1303.
Texto completoHasan, Md Nazmul, Edward Swinnich y Jung-Hun Seo. "Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics". International Journal of High Speed Electronics and Systems 28, n.º 01n02 (marzo de 2019): 1940004. http://dx.doi.org/10.1142/s0129156419400044.
Texto completoSATO, TOSHIRO. "Micromagnetic Devices for High Frequency Power." Journal of the Institute of Electrical Engineers of Japan 123, n.º 11 (2003): 723–26. http://dx.doi.org/10.1541/ieejjournal.123.723.
Texto completoRahman, Md Wahidur, Chandan Joishi, Nidhin Kurian Kalarickal, Hyunsoo Lee y Siddharth Rajan. "High-Permittivity Dielectric for High-Performance Wide Bandgap Electronic Devices". ECS Meeting Abstracts MA2022-02, n.º 32 (9 de octubre de 2022): 1210. http://dx.doi.org/10.1149/ma2022-02321210mtgabs.
Texto completoLiu, An-Chen, Po-Tsung Tu, Catherine Langpoklakpam, Yu-Wen Huang, Ya-Ting Chang, An-Jye Tzou, Lung-Hsing Hsu, Chun-Hsiung Lin, Hao-Chung Kuo y Edward Yi Chang. "The Evolution of Manufacturing Technology for GaN Electronic Devices". Micromachines 12, n.º 7 (23 de junio de 2021): 737. http://dx.doi.org/10.3390/mi12070737.
Texto completoWang, Li y Chun Feng. "The International Research Progress of GaN-Based Microwave Electronic Devices". Advanced Materials Research 1053 (octubre de 2014): 69–73. http://dx.doi.org/10.4028/www.scientific.net/amr.1053.69.
Texto completoFeng, Jinjun, Yubin Gong, Chaohai Du y Adrian Cross. "High-Frequency Vacuum Electron Devices". Electronics 11, n.º 5 (5 de marzo de 2022): 817. http://dx.doi.org/10.3390/electronics11050817.
Texto completoAyubi-Moak, J. S., S. M. Goodnick y M. Saraniti. "Global Modeling of high frequency devices". Journal of Computational Electronics 5, n.º 4 (9 de diciembre de 2006): 415–18. http://dx.doi.org/10.1007/s10825-006-0028-3.
Texto completoOHSHIMA, S. "Special Section on Superconducting High-frequency Devices". IEICE Transactions on Electronics E89-C, n.º 2 (1 de febrero de 2006): 97. http://dx.doi.org/10.1093/ietele/e89-c.2.97.
Texto completoPetukhov, Igor B. y Vladimir L. Lanin. "High Frequency Ultrasonic Transducers for Interconnection Microwelding in Electronic Devices". International Journal of Scientific Research in Knowledge 3, n.º 9 (1 de septiembre de 2015): 241–46. http://dx.doi.org/10.12983/ijsrk-2015-p0241-0246.
Texto completoYAMAGUCHI, MASAHIRO. "Recent Progress of High Frequency Micromagnetic Devices." Journal of the Institute of Electrical Engineers of Japan 123, n.º 11 (2003): 716–18. http://dx.doi.org/10.1541/ieejjournal.123.716.
Texto completoCapano, Michael A. y Robert J. Trew. "Silicon Carbide Electronic Materials and Devices". MRS Bulletin 22, n.º 3 (marzo de 1997): 19–23. http://dx.doi.org/10.1557/s0883769400032711.
Texto completoIoffe, Valery M. y Sergei I. Chikichev. "New varactors and high-power high-frequency capacitive devices". Solid-State Electronics 49, n.º 3 (marzo de 2005): 385–97. http://dx.doi.org/10.1016/j.sse.2004.11.018.
Texto completoMalykhin, A. Yu, A. A. Panich, A. E. Panich, G. S. Radchenko y A. V. Skrylev. "Forecasting of high-frequency magnetoelectric resonances of electronic technics component devices". Физические основы приборостроения 8, n.º 1 (15 de marzo de 2019): 36–41. http://dx.doi.org/10.25210/jfop-1901-036041.
Texto completoPaul, D., M. S. Nakhla, R. Achar y A. Weisshaar. "Broadband Modeling of High-Frequency Microwave Devices". IEEE Transactions on Microwave Theory and Techniques 57, n.º 2 (febrero de 2009): 361–73. http://dx.doi.org/10.1109/tmtt.2008.2011247.
Texto completoUrteaga, M., S. Krishnan, D. Scott, Y. Wei, M. Dahlstrom, S. Lee y M. J. W. Rodwell. "Submicron InP-based HBTs for Ultra-high Frequency Amplifiers". International Journal of High Speed Electronics and Systems 13, n.º 02 (junio de 2003): 457–95. http://dx.doi.org/10.1142/s0129156403001806.
Texto completoChu, Rong Ming. "GaN MOS Structures with Low Interface Trap Density". Solid State Phenomena 314 (febrero de 2021): 79–83. http://dx.doi.org/10.4028/www.scientific.net/ssp.314.79.
Texto completoKE, Haotao y Douglas C. Hopkins. "Development of Printed Power Packaging for a High Voltage SiC Module". International Symposium on Microelectronics 2012, n.º 1 (1 de enero de 2012): 000955–60. http://dx.doi.org/10.4071/isom-2012-wp55.
Texto completoZhang, Jing. "Novel Thermal-Electrical-Mechanical Model for Simulating Coupled Phenomena in High-Frequency Electronic Devices". Key Engineering Materials 538 (enero de 2013): 173–76. http://dx.doi.org/10.4028/www.scientific.net/kem.538.173.
Texto completoHu, Qing, S. Verghese, R. A. Wyss, Th Schäpers, J. del Alamo, S. Feng, K. Yakubo, M. J. Rooks, M. R. Melloch y A. Förster. "High-frequency ( THz) studies of quantum-effect devices". Semiconductor Science and Technology 11, n.º 12 (1 de diciembre de 1996): 1888–94. http://dx.doi.org/10.1088/0268-1242/11/12/021.
Texto completoFREEMAN, G. G., B. JAGANNATHAN, N. ZAMDMER, R. GROVES, R. SINGH, Y. TRETIAKOV, M. KUMAR et al. "INTEGRATED SiGe AND Si DEVICE CAPABILITIES AND TRENDS FOR MULTI-GIGAHERTZ APPLICATIONS". International Journal of High Speed Electronics and Systems 13, n.º 01 (marzo de 2003): 175–219. http://dx.doi.org/10.1142/s0129156403001570.
Texto completoHan, Fangming, Ou Qian, Guowen Meng, Dou Lin, Gan Chen, Shiping Zhang, Qijun Pan, Xiang Zhang, Xiaoguang Zhu y Bingqing Wei. "Structurally integrated 3D carbon tube grid–based high-performance filter capacitor". Science 377, n.º 6609 (26 de agosto de 2022): 1004–7. http://dx.doi.org/10.1126/science.abh4380.
Texto completoHe, Juntao, Yibing Cao, Jiande Zhang, Ting Wang y Junpu Ling. "Design of a dual-frequency high-power microwave generator". Laser and Particle Beams 29, n.º 4 (diciembre de 2011): 479–85. http://dx.doi.org/10.1017/s0263034611000590.
Texto completoWatanabe, S. "Technology transfer for high frequency devices for consumer electronics". IEEE Transactions on Microwave Theory and Techniques 40, n.º 12 (1992): 2461–66. http://dx.doi.org/10.1109/22.179917.
Texto completoNikitin, V. F., N. N. Smirnov, M. N. Smirnova y V. V. Tyurenkova. "On board electronic devices safety subject to high frequency electromagnetic radiation effects". Acta Astronautica 135 (junio de 2017): 181–86. http://dx.doi.org/10.1016/j.actaastro.2016.09.012.
Texto completoYANAGIHARA, Manabu y Tetsuzo UEDA. "Development of GaN Power Devices for High Switching Frequency". Journal of The Institute of Electrical Engineers of Japan 139, n.º 2 (1 de febrero de 2019): 80–83. http://dx.doi.org/10.1541/ieejjournal.139.80.
Texto completoPénarier, A., J. C. Vildeuil, M. Valenza, D. Rigaud, S. G. Jarrix, C. Delseny y F. Pascal. "Low-frequency noise in III–V high-speed devices". IEE Proceedings - Circuits, Devices and Systems 149, n.º 1 (1 de febrero de 2002): 59–67. http://dx.doi.org/10.1049/ip-cds:20020330.
Texto completoBollaert, S., A. Cappy, Y. Roelens, J. S. Galloo, C. Gardes, Z. Teukam, X. Wallart et al. "Ballistic nano-devices for high frequency applications". Thin Solid Films 515, n.º 10 (marzo de 2007): 4321–26. http://dx.doi.org/10.1016/j.tsf.2006.07.178.
Texto completoBaiburin, V. B., A. S. Rozov, N. Yu Khorovodova, A. S. Ershov y A. A. Nikiforov. "A new approach to the development of perspective compact frequency multipliers of the subterahertz and terahertz bands for on-board electronic equipment". Radioengineering 8 (2021): 111–21. http://dx.doi.org/10.18127/j00338486-202108-12.
Texto completoIbrahim, Ali, Zoubir Khatir y Laurent Dupont. "Characterization and Aging Test Methodology for Power Electronic Devices at High Temperature". Advanced Materials Research 324 (agosto de 2011): 411–14. http://dx.doi.org/10.4028/www.scientific.net/amr.324.411.
Texto completoJoglekar, Sameer, Mohamed Azize y Tomás Palacios. "Reactive sputtering of III-N materials for applications in electronic devices". MRS Advances 1, n.º 2 (2016): 141–46. http://dx.doi.org/10.1557/adv.2016.38.
Texto completoZhang, Dianhao, Xiao-guang Huang, Bin-liang Cheng y Neng Zhang. "Numerical analysis and thermal fatigue life prediction of solder layer in a SiC-IGBT power module". Frattura ed Integrità Strutturale 15, n.º 55 (28 de diciembre de 2020): 316–26. http://dx.doi.org/10.3221/igf-esis.55.24.
Texto completoBalmer, R. S., I. Friel, S. M. Woollard, C. J. H. Wort, G. A. Scarsbrook, S. E. Coe, H. El-Hajj et al. "Unlocking diamond's potential as an electronic material". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, n.º 1863 (19 de noviembre de 2007): 251–65. http://dx.doi.org/10.1098/rsta.2007.2153.
Texto completoLeonte, I. I., G. Sehra, M. Cole, P. Hesketh y J. W. Gardner. "Taste sensors utilizing high-frequency SH-SAW devices". Sensors and Actuators B: Chemical 118, n.º 1-2 (octubre de 2006): 349–55. http://dx.doi.org/10.1016/j.snb.2006.04.040.
Texto completoAVRAMOV, IVAN D. "HIGH-PERFORMANCE SURFACE TRANSVERSE WAVE RESONATORS IN THE LOWER GHz FREQUENCY RANGE". International Journal of High Speed Electronics and Systems 10, n.º 03 (septiembre de 2000): 735–92. http://dx.doi.org/10.1142/s0129156400000635.
Texto completoKnoesen, André, Ge Song, Willi Volksen, Elbert Huang, Teddie Magbitang, Linda Sundberg, James L. Hedrick, Craig J. Hawker y Robert D. Miller. "Porous organosilicates low-dielectric films for high-frequency devices". Journal of Electronic Materials 33, n.º 2 (febrero de 2004): 135–40. http://dx.doi.org/10.1007/s11664-004-0283-7.
Texto completoTREW, R. J. y M. W. SHIN. "HIGH FREQUENCY, HIGH TEMPERATURE FIELD-EFFECT TRANSISTORS FABRICATED FROM WIDE BAND GAP SEMICONDUCTORS". International Journal of High Speed Electronics and Systems 06, n.º 01 (marzo de 1995): 211–36. http://dx.doi.org/10.1142/s0129156495000067.
Texto completoRaskin, J. P., D. J. Pearman, G. Pailloncy, J. M. Larson, J. Snyder, D. L. Leadley y T. E. Whall. "High-Frequency Performance of Schottky Source/Drain Silicon pMOS Devices". IEEE Electron Device Letters 29, n.º 4 (abril de 2008): 396–98. http://dx.doi.org/10.1109/led.2008.918250.
Texto completoBlampain, Eloi, Omar Elmazria, Thierry Aubert, Badreddine Mohamed Assouar y Ouarda Legrani. "AlN/Sapphire: Promising Structure for High Temperature and High Frequency SAW Devices". IEEE Sensors Journal 13, n.º 12 (diciembre de 2013): 4607–12. http://dx.doi.org/10.1109/jsen.2013.2271863.
Texto completoHaziq, Muhaimin, Shaili Falina, Asrulnizam Abd Manaf, Hiroshi Kawarada y Mohd Syamsul. "Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review". Micromachines 13, n.º 12 (1 de diciembre de 2022): 2133. http://dx.doi.org/10.3390/mi13122133.
Texto completoArnaboldi, C., G. Boella, R. Mazza, E. Panzeri y G. Pessina. "A cryogenic set-up for low-frequency noise characterization of electronic devices". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 520, n.º 1-3 (marzo de 2004): 644–46. http://dx.doi.org/10.1016/j.nima.2003.11.366.
Texto completoPaś, Jacek. "The impact of strong electromagnetic pulses generated in a targeted manner on the process of operation of electronic devices and systems". WUT Journal of Transportation Engineering 124 (1 de marzo de 2019): 141–50. http://dx.doi.org/10.5604/01.3001.0013.7183.
Texto completoSuresh, Vignesh, Meiyu Stella Huang, Madapusi P. Srinivasan y Sivashankar Krishnamoorthy. "High Density Metal Oxide (ZnO) Nanopatterned Platforms for Electronic Applications". MRS Proceedings 1498 (2013): 255–61. http://dx.doi.org/10.1557/opl.2013.344.
Texto completoSokol, Yevgen I., Volodymyr V. Zamaruiev, Volodymyr V. Ivakhno y Yurii S. Voitovych. "Electronic Phase Shifting in Multipulse Rectifier". Electrical, Control and Communication Engineering 12, n.º 1 (1 de julio de 2017): 5–10. http://dx.doi.org/10.1515/ecce-2017-0001.
Texto completoChoi, Nak-Sun, Gi-Woo Jeung, Jin-Kyu Byun, Heung-Geun Kim y Dong-Hun Kim. "Generalized Continuum Sensitivity Formula for Shape Optimization of High-Frequency Devices in Frequency Domain". IEEE Transactions on Magnetics 47, n.º 5 (mayo de 2011): 1274–77. http://dx.doi.org/10.1109/tmag.2010.2087009.
Texto completoLIANG, CHUNGUANG, QINGMING ZENG, ZHENCHANG MA, MINGWEN YUAN y JINPING AO. "GaAs HIGH SPEED DEVICES AND CIRCUITS". International Journal of High Speed Electronics and Systems 07, n.º 03 (septiembre de 1996): 447–61. http://dx.doi.org/10.1142/s0129156496000256.
Texto completoChen, Tianshu, Aiqun Hu y Yu Jiang. "Radio Frequency Fingerprint-Based DSRC Intelligent Vehicle Networking Identification Mechanism in High Mobility Environment". Sustainability 14, n.º 9 (22 de abril de 2022): 5037. http://dx.doi.org/10.3390/su14095037.
Texto completoYe, B., F. Li, D. Cimpoesu, J. B. Wiley, J. S. Jung, A. Stancu y L. Spinu. "Passive high-frequency devices based on superlattice ferromagnetic nanowires". Journal of Magnetism and Magnetic Materials 316, n.º 2 (septiembre de 2007): e56-e58. http://dx.doi.org/10.1016/j.jmmm.2007.02.026.
Texto completoFarhana, Soheli. "Design of carbon nanotube field effect transistor (CNTFET) small signal model". International Journal of Electrical and Computer Engineering (IJECE) 10, n.º 1 (1 de febrero de 2020): 180. http://dx.doi.org/10.11591/ijece.v10i1.pp180-187.
Texto completo