Literatura académica sobre el tema "High frequency electronic devices"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "High frequency electronic devices".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "High frequency electronic devices"
Trew, R. J. "High-Frequency Solid-State Electronic Devices". IEEE Transactions on Electron Devices 52, n.º 5 (mayo de 2005): 638–49. http://dx.doi.org/10.1109/ted.2005.845862.
Texto completoZhao, Lan y Wen Lei Zhao. "Frequency Characteristics and Conversion of Microwave Photons". Applied Mechanics and Materials 568-570 (junio de 2014): 1303–6. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.1303.
Texto completoHasan, Md Nazmul, Edward Swinnich y Jung-Hun Seo. "Recent Progress in Gallium Oxide and Diamond Based High Power and High-Frequency Electronics". International Journal of High Speed Electronics and Systems 28, n.º 01n02 (marzo de 2019): 1940004. http://dx.doi.org/10.1142/s0129156419400044.
Texto completoSATO, TOSHIRO. "Micromagnetic Devices for High Frequency Power." Journal of the Institute of Electrical Engineers of Japan 123, n.º 11 (2003): 723–26. http://dx.doi.org/10.1541/ieejjournal.123.723.
Texto completoRahman, Md Wahidur, Chandan Joishi, Nidhin Kurian Kalarickal, Hyunsoo Lee y Siddharth Rajan. "High-Permittivity Dielectric for High-Performance Wide Bandgap Electronic Devices". ECS Meeting Abstracts MA2022-02, n.º 32 (9 de octubre de 2022): 1210. http://dx.doi.org/10.1149/ma2022-02321210mtgabs.
Texto completoLiu, An-Chen, Po-Tsung Tu, Catherine Langpoklakpam, Yu-Wen Huang, Ya-Ting Chang, An-Jye Tzou, Lung-Hsing Hsu, Chun-Hsiung Lin, Hao-Chung Kuo y Edward Yi Chang. "The Evolution of Manufacturing Technology for GaN Electronic Devices". Micromachines 12, n.º 7 (23 de junio de 2021): 737. http://dx.doi.org/10.3390/mi12070737.
Texto completoWang, Li y Chun Feng. "The International Research Progress of GaN-Based Microwave Electronic Devices". Advanced Materials Research 1053 (octubre de 2014): 69–73. http://dx.doi.org/10.4028/www.scientific.net/amr.1053.69.
Texto completoFeng, Jinjun, Yubin Gong, Chaohai Du y Adrian Cross. "High-Frequency Vacuum Electron Devices". Electronics 11, n.º 5 (5 de marzo de 2022): 817. http://dx.doi.org/10.3390/electronics11050817.
Texto completoAyubi-Moak, J. S., S. M. Goodnick y M. Saraniti. "Global Modeling of high frequency devices". Journal of Computational Electronics 5, n.º 4 (9 de diciembre de 2006): 415–18. http://dx.doi.org/10.1007/s10825-006-0028-3.
Texto completoOHSHIMA, S. "Special Section on Superconducting High-frequency Devices". IEICE Transactions on Electronics E89-C, n.º 2 (1 de febrero de 2006): 97. http://dx.doi.org/10.1093/ietele/e89-c.2.97.
Texto completoTesis sobre el tema "High frequency electronic devices"
Stevens, M. J. "Digital control of high frequency pulse-width modulated inverters". Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373297.
Texto completoWard, Gillian Anne. "Design of a multi-kilowatt, high frequency, DC-DC converter". Thesis, University of Birmingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274596.
Texto completoWilliams, Richard. "High frequency multi-element transformers for switched-mode power supplies". Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283625.
Texto completoSkulason, Helgi. "High-frequency characterization and applications of graphene devices". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119524.
Texto completoDans cette thèse, nous avons expérimentalement sondé les micro-ondes électrodynamiques de graphène de grande surface, plus particulièrement les mesures de graphène sans contact pour en extraire les propriétés de la matière et la mise en œuvre de dispositifs non-réciproques générateurs de micro-ondes. Notre objectif consiste à exploiter l'interaction entre le graphène et les ondes électromagnétiques dans le domaine des micro-ondes. En fabriquant un guide d'ondes de graphène coplanaire à large bande, nous établissons que le graphène possède une résistance de large bande constante comprise entre 17 Hz et 110 GHz. Ceci est attribuable à l'inductivité cinétique et à l'effet pelliculaire négligeables jusqu'à 110 GHz. Nous décrivons l'impédance des contacts entre le graphène et les électrodes métalliques. Nos dispositifs démontrent que la capacitance de contact court-circuite la résistance de contact au-dessus de 2 GHz, permettant les mesures du graphène sans contact jusqu'à 110 GHz. Nous avons mesuré la conductivité magnétique du graphène à grande surface sous excitation de micro-ondes utilisant une géométrie de disque Corbino en transférant les films de graphène sur des embouts de câble coaxial polis. Notre installation permet l'utilisation de dispositifs de graphène actifs et passifs où les dispositifs actifs sont dopés par effet de champ avec une grille de silicium intrinsèque transparente aux micro-ondes. Nous avons extrait des mobilités à base de la conductivité magnétique autour de 1000 cm… en utilisant le model de Drude à une composante à haute densité. Une magnéto résistance atypique a également été observée. Nous avons créé, fabriqué et caractérisé un guide d'onde isolateur creux avec du graphène biaisé magnétiquement agissant comme élément non-réciproque par rotation de Faraday. Notre montage expérimentale permet la caractérisation sans contact de la conductivité, la mobilité et la densité de porteurs de charges du film de graphène. La rotation de Faraday a été mesuré jusqu'à 1.5 ce qui résulte en une isolation de 25dB. Nous démontrons que la performance de l'isolateur peut être améliorée en augmentant la mobilité dans le graphène. Étant donné que la direction de la rotation de Faraday dépend du signe du porteur de charge dominant dans le graphène, nous soumettons des données démontrant que la direction de l'isolation peut être modulée et changée en utilisant l'effet de champ implémenté dans le guide d'ondes creux avec une seule source de voltage à basse puissance. Notre travail suggère que d'autres dispositifs non-réciproques comme des circulateurs peuvent être implémentés de façon compacte avec du graphène.
Lotfi, Ashraf W. "The electrodynamics of high frequency magnetics in power electronics /". This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-171908/.
Texto completoFrake, James Christopher. "Investigations of mesoscopic device physics using high frequency electronic techniques". Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707903.
Texto completoKudrya, V. G. y D. A. Voronenko. "Designing Nanotechnology Matching Devices". Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35357.
Texto completoLotfi, Ashraf Wagih. "The electrodynamics of high frequency magnetics in power electronics". Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/38504.
Texto completoPh. D.
Le, Minh-Nhat Ba. "ADVANCED THERMOSONIC WIRE BONDING USING HIGH FREQUENCY ULTRASONIC POWER: OPTIMIZATION, BONDABILITY, AND RELIABILITY". DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/177.
Texto completoGradzki, Pawel Miroslaw. "Core loss characterization and design optimization of high-frequency power ferrite devices in power electronics applications". Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-06062008-165934/.
Texto completoLibros sobre el tema "High frequency electronic devices"
Fay, Patrick, Debdeep Jena y Paul Maki, eds. High-Frequency GaN Electronic Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20208-8.
Texto completoP, Muralt, Materials Research Society, Materials Research Society Meeting y Symposium on Materials, Integration and Packaging Issues for High-Frequency Devices (2003 : Boston, Mass.), eds. Materials, integration and packaging issues for high-frequency devices: Symposium held December 1-3, 2003, Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2004.
Buscar texto completoS, Cho Yong, Materials Research Society, Materials Research Society Meeting y Symposium on Materials, Integration and Packaging Issues for High-Frequency Devices (2004 : Boston, Mass.), eds. Materials, integration and packaging issues for high-frequency devices II: Symposium held November 29-December 1, 2004, Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2005.
Buscar texto completo1954-, Peyghambarian Nasser y Society of Photo-optical Instrumentation Engineers., eds. Nonlinear optics for high-speed electronics and optical frequency conversion: 24-26 January 1994, Los Angeles, California. Bellingham, Wash., USA: SPIE, 1994.
Buscar texto completo1959-, Harjani Ramesh, ed. Design of high performance CMOS voltage-controlled oscillators. Boston: Kluwer Academic Publishers, 2003.
Buscar texto completoKazimierczuk, Marian. High-frequency magnetic components. Chichester, West Sussex, U.K: J. Wiley, 2009.
Buscar texto completoLimited, Hitachi. Hitachi ultra high frequency devices data book. Tokyo: Hitachi Ltd, 1991.
Buscar texto completoMartens, Luc. High-Frequency Characterization of Electronic Packaging. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5623-7.
Texto completoMartens, Luc. High-frequency characterization of electronic packaging. Boston: Kluwer Academic Publishers, 1998.
Buscar texto completoF, Nibler y Institution of Electrical Engineers, eds. High-frequency circuit engineering. London: Institution of Electrical Engineers, 1996.
Buscar texto completoCapítulos de libros sobre el tema "High frequency electronic devices"
Coffie, Robert L. "High Power High Frequency Transistors: A Material’s Perspective". En High-Frequency GaN Electronic Devices, 5–41. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_2.
Texto completoFay, Patrick, Debdeep Jena y Paul Maki. "Introduction and Overview". En High-Frequency GaN Electronic Devices, 1–3. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_1.
Texto completoSertel, Kubilay y Georgios C. Trichopoulos. "Non-contact Metrology for mm-Wave and THz Electronics". En High-Frequency GaN Electronic Devices, 283–99. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_10.
Texto completoKhurgin, J. y D. Jena. "Isotope Engineering of GaN for Boosting Transistor Speeds". En High-Frequency GaN Electronic Devices, 43–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_3.
Texto completoBader, Samuel James, Keisuke Shinohara y Alyosha Molnar. "Linearity Aspects of High Power Amplification in GaN Transistors". En High-Frequency GaN Electronic Devices, 83–107. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_4.
Texto completoYang, Zhichao, Digbijoy N. Nath, Yuewei Zhang, Sriram Krishnamoorthy, Jacob Khurgin y Siddharth Rajan. "III-Nitride Tunneling Hot Electron Transfer Amplifier (THETA)". En High-Frequency GaN Electronic Devices, 109–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_5.
Texto completoCondori Quispe, Hugo O., Berardi Sensale-Rodriguez y Patrick Fay. "Plasma-Wave Propagation in GaN and Its Applications". En High-Frequency GaN Electronic Devices, 159–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_6.
Texto completoBhardwaj, Shubhendu y John Volakis. "Numerical Simulation of Distributed Electromagnetic and Plasma Wave Effect Devices". En High-Frequency GaN Electronic Devices, 181–214. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_7.
Texto completoEncomendero, Jimy, Debdeep Jena y Huili Grace Xing. "Resonant Tunneling Transport in Polar III-Nitride Heterostructures". En High-Frequency GaN Electronic Devices, 215–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_8.
Texto completoZhang, W. D., T. A. Growden, E. R. Brown, P. R. Berger, D. F. Storm y D. J. Meyer. "Fabrication and Characterization of GaN/AlN Resonant Tunneling Diodes". En High-Frequency GaN Electronic Devices, 249–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_9.
Texto completoActas de conferencias sobre el tema "High frequency electronic devices"
Wei, Yazhou, Mo Li, Yong Luo y Jian Zhang. "Ultra-High Frequency GaN Nanoscale Vacuum Electronic Devices". En 2021 22nd International Vacuum Electronics Conference (IVEC). IEEE, 2021. http://dx.doi.org/10.1109/ivec51707.2021.9722483.
Texto completoYamaguchi, M., Y. Endo y Y. Shimada. "High-frequency Magnetic Shielding Technology for Electronic Devices (Invited)". En 2008 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2008. http://dx.doi.org/10.7567/ssdm.2008.c-7-3.
Texto completoGonzalez, Tomas. "Carrier dynamics probed by noise in high-frequency electronic devices". En 2015 International Conference on Noise and Fluctuations (ICNF). IEEE, 2015. http://dx.doi.org/10.1109/icnf.2015.7288541.
Texto completoKanagawa, Naoki, Daisuke Sasaki y Shigeru Yamatsu. "Low Dielectric Properties Encapsulation for High Frequency Devices". En 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018. http://dx.doi.org/10.1109/ectc.2018.00285.
Texto completoTanigawa, Takao, Etsuo Mizushima, Mami Shimada, Kohji Morita, Minoru Kakitani y Shin Takanezawa. "Low Transmission Loss Film Material for High-Speed High-Frequency Devices". En 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). IEEE, 2018. http://dx.doi.org/10.1109/ectc.2018.00264.
Texto completoChatterjee, Subrangshu, Anumita Sengupta, Sudip Kundu y Aminul Islam. "Analysis of AlGaN/GaN high electron mobility transistor for high frequency application". En 2017 Devices for Integrated Circuit (DevIC). IEEE, 2017. http://dx.doi.org/10.1109/devic.2017.8073935.
Texto completoYazawa, Kazuaki, Dustin Kendig y Ali Shakouri. "Thermal imaging characterization for high frequency and high power devices". En 2015 International Conference on Electronic Packaging and iMAPS All Asia Conference (ICEP-IAAC). IEEE, 2015. http://dx.doi.org/10.1109/icep-iaac.2015.7111043.
Texto completoDudarev, N. V. y S. N. Darovskih. "Volumetric-modular technology for building high-frequency diagramming devices". En 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT). IEEE, 2018. http://dx.doi.org/10.1109/mwent.2018.8337281.
Texto completoSaijun Mao, Tao Wu, Xi Lu, Jelena Popovic y Jan Abraham Ferreira. "High frequency high voltage power conversion with silicon carbide power semiconductor devices". En 2016 6th Electronic System-Integration Technology Conference (ESTC). IEEE, 2016. http://dx.doi.org/10.1109/estc.2016.7764721.
Texto completoKreischer, K. E., B. G. Danly, H. Saito, J. B. Schutkeker, R. J. Temkin y T. M. Tran. "Development of high frequency gyrotrons". En 1985 International Electron Devices Meeting. IRE, 1985. http://dx.doi.org/10.1109/iedm.1985.191020.
Texto completoInformes sobre el tema "High frequency electronic devices"
van der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, marzo de 2021. http://dx.doi.org/10.53109/ypdh3824.
Texto completoBuhrman, Robert A. Ultra-High Frequency Superconductive Devices. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1991. http://dx.doi.org/10.21236/ada236795.
Texto completoWu, X. D., A. Finokoglu, M. Hawley, Q. Jia, T. Mitchell, F. Mueller, D. Reagor y J. Tesmer. High-temperature superconducting thin-film-based electronic devices. Office of Scientific and Technical Information (OSTI), septiembre de 1996. http://dx.doi.org/10.2172/378956.
Texto completoHietala, V. M., T. A. Plut, S. H. Kravitz, G. A. Vawter, J. R. Wendt y M. G. Armendariz. Ultra-high-speed optical and electronic distributed devices. Office of Scientific and Technical Information (OSTI), agosto de 1995. http://dx.doi.org/10.2172/109671.
Texto completoBuhrman, Robert A., Daniel C. Ralph, Bill Rippard, Tom Silva, Stephen Russek, Stuart A. Wolf, Arthur W. Lichtenberger, II Weikle, Deaver Robert M. y Bascom S. High-Frequency Spin-Based Devices for Nanoscale Signal Processing. Fort Belvoir, VA: Defense Technical Information Center, enero de 2009. http://dx.doi.org/10.21236/ada520629.
Texto completoZolper, J. C., A. G. Baca, M. E. Sherwin y J. F. Klem. Ion implantation in compound semiconductors for high-performance electronic devices. Office of Scientific and Technical Information (OSTI), mayo de 1996. http://dx.doi.org/10.2172/231550.
Texto completoSturm, James C. Reduced Strain Silicon-Based Heterostructures for High Speed Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1998. http://dx.doi.org/10.21236/ada378013.
Texto completoDeFord, John F., Ben Held, Liya Chernyakova y John Petillo. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2006. http://dx.doi.org/10.21236/ada444752.
Texto completoDeFord, J. F., B. Held, L. Chemykova y J. Petillo. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2006. http://dx.doi.org/10.21236/ada454540.
Texto completoDeford, John F., Ben Held, Liya Chernyakova y John Petillo. Computer-Aided Design and Optimization of High-Performance Vacuum Electronic Devices. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2004. http://dx.doi.org/10.21236/ada428963.
Texto completo