Literatura académica sobre el tema "High frequency electronic applications"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "High frequency electronic applications".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "High frequency electronic applications"
Zampardi, P. J., K. Runge, R. L. Pierson, J. A. Higgins, R. Yu, B. T. McDermott y N. Pan. "Heterostructure-based high-speed/high-frequency electronic circuit applications". Solid-State Electronics 43, n.º 8 (agosto de 1999): 1633–43. http://dx.doi.org/10.1016/s0038-1101(99)00113-6.
Texto completoAdachi, Michael M. "(Invited) Thickness-Modulated MoS2 for High-Frequency Electronic Applications". ECS Meeting Abstracts MA2021-01, n.º 14 (30 de mayo de 2021): 664. http://dx.doi.org/10.1149/ma2021-0114664mtgabs.
Texto completoTan, Qi Yao. "Applications of Simulation and Demo in High Frequency Electronic Circuit". Applied Mechanics and Materials 427-429 (septiembre de 2013): 450–54. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.450.
Texto completoHeadrick, J. M. y J. F. Thomason. "Applications of high-frequency radar". Radio Science 33, n.º 4 (julio de 1998): 1045–54. http://dx.doi.org/10.1029/98rs01013.
Texto completoMU, Chunhong, Huaiwu ZHANG, Yingli LIU, Yuanqiang SONG y Peng LIU. "Rare earth doped CaCu3Ti4O12 electronic ceramics for high frequency applications". Journal of Rare Earths 28, n.º 1 (febrero de 2010): 43–47. http://dx.doi.org/10.1016/s1002-0721(09)60048-x.
Texto completoXun Gong, W. J. Chappell y L. P. B. Katehi. "Multifunctional substrates for high-frequency applications". IEEE Microwave and Wireless Components Letters 13, n.º 10 (octubre de 2003): 428–30. http://dx.doi.org/10.1109/lmwc.2003.818525.
Texto completoBURKE, P. J., C. RUTHERGLEN y Z. YU. "SINGLE-WALLED CARBON NANOTUBES: APPLICATIONS IN HIGH FREQUENCY ELECTRONICS". International Journal of High Speed Electronics and Systems 16, n.º 04 (diciembre de 2006): 977–99. http://dx.doi.org/10.1142/s0129156406004119.
Texto completoHamed, Ahmed, Mohamed Saeed y Renato Negra. "Graphene-Based Frequency-Conversion Mixers for High-Frequency Applications". IEEE Transactions on Microwave Theory and Techniques 68, n.º 6 (junio de 2020): 2090–96. http://dx.doi.org/10.1109/tmtt.2020.2978821.
Texto completoGardes, C., Y. Roelens, S. Bollaert, J. S. Galloo, X. Wallart, A. Curutchet, C. Gaquiere et al. "Ballistic nanodevices for high frequency applications". International Journal of Nanotechnology 5, n.º 6/7/8 (2008): 796. http://dx.doi.org/10.1504/ijnt.2008.018698.
Texto completoAlshehri, Ali H., Malgorzata Jakubowska, Anna Młożniak, Michal Horaczek, Diana Rudka, Charles Free y J. David Carey. "Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications". ACS Applied Materials & Interfaces 4, n.º 12 (26 de noviembre de 2012): 7007–10. http://dx.doi.org/10.1021/am3022569.
Texto completoTesis sobre el tema "High frequency electronic applications"
Massicotte, Mathieu. "Graphene electronics for high frequency, scalable applications". Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110547.
Texto completoL'avènement du graphène produit à grande-échelle par dépôt chimique en phase vapeur (CVD) ouvre une voie vers l'électronique haute-fréquence (HF) à base de graphène. Synthétiser du graphène possédant une grande mobilité des porteurs de charge et l'incorporer à des dispositifs HF constitue cependant un important défi. Nous présentons ici le fruit de nos efforts pour comprendre et contrôler le mécanisme de croissance CVD du graphène sur le cuivre, caractériser les films ainsi produits, et fabriquer des transistors et dispositifs HF à base de graphène. Parallèlement, nous décrivons la synthèse de grands flocons dendritiques de graphène que nous appelons graphlocons. Les propriété électroniques et la magnetorésistance de ces échantillons ont été mesurées de 300 K à 100 mK et la mobilité la plus élevée obtenue est de 460 cm^2/Vs avec une densité de porteurs de charge résiduels de 1.6x10^12 cm^-2 . Les paramètres S de haute fréquence ont été mesurés de 0.04 à 20 GHz mais aucune dépendance en température ou champ magnétique n'a été observée. Ce travail fourni un point de départ pour améliorer les propriétés structurales et électroniques du graphène produit par CVD, et pour explorer de nouveaux phénomènes dans le domaine des GHz. .
Davari, Pooya. "High frequency high power converters for industrial applications". Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/62896/1/Pooya_Davari_Thesis.pdf.
Texto completoSkulason, Helgi. "High-frequency characterization and applications of graphene devices". Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119524.
Texto completoDans cette thèse, nous avons expérimentalement sondé les micro-ondes électrodynamiques de graphène de grande surface, plus particulièrement les mesures de graphène sans contact pour en extraire les propriétés de la matière et la mise en œuvre de dispositifs non-réciproques générateurs de micro-ondes. Notre objectif consiste à exploiter l'interaction entre le graphène et les ondes électromagnétiques dans le domaine des micro-ondes. En fabriquant un guide d'ondes de graphène coplanaire à large bande, nous établissons que le graphène possède une résistance de large bande constante comprise entre 17 Hz et 110 GHz. Ceci est attribuable à l'inductivité cinétique et à l'effet pelliculaire négligeables jusqu'à 110 GHz. Nous décrivons l'impédance des contacts entre le graphène et les électrodes métalliques. Nos dispositifs démontrent que la capacitance de contact court-circuite la résistance de contact au-dessus de 2 GHz, permettant les mesures du graphène sans contact jusqu'à 110 GHz. Nous avons mesuré la conductivité magnétique du graphène à grande surface sous excitation de micro-ondes utilisant une géométrie de disque Corbino en transférant les films de graphène sur des embouts de câble coaxial polis. Notre installation permet l'utilisation de dispositifs de graphène actifs et passifs où les dispositifs actifs sont dopés par effet de champ avec une grille de silicium intrinsèque transparente aux micro-ondes. Nous avons extrait des mobilités à base de la conductivité magnétique autour de 1000 cm… en utilisant le model de Drude à une composante à haute densité. Une magnéto résistance atypique a également été observée. Nous avons créé, fabriqué et caractérisé un guide d'onde isolateur creux avec du graphène biaisé magnétiquement agissant comme élément non-réciproque par rotation de Faraday. Notre montage expérimentale permet la caractérisation sans contact de la conductivité, la mobilité et la densité de porteurs de charges du film de graphène. La rotation de Faraday a été mesuré jusqu'à 1.5 ce qui résulte en une isolation de 25dB. Nous démontrons que la performance de l'isolateur peut être améliorée en augmentant la mobilité dans le graphène. Étant donné que la direction de la rotation de Faraday dépend du signe du porteur de charge dominant dans le graphène, nous soumettons des données démontrant que la direction de l'isolation peut être modulée et changée en utilisant l'effet de champ implémenté dans le guide d'ondes creux avec une seule source de voltage à basse puissance. Notre travail suggère que d'autres dispositifs non-réciproques comme des circulateurs peuvent être implémentés de façon compacte avec du graphène.
Lim, Ying Ying. "Printing conductive traces to enable high frequency wearable electronics applications". Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/17880.
Texto completoBar, Galit 1970. "High-frequency time domain electron paramagnetic resonance : methods and applications". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/17826.
Texto completoVita.
Includes bibliographical references.
There are numerous advantages to high frequency (high field) electron paramagnetic resonance (EPR) spectroscopy. Two of the most important are improved sensitivity and the improved resolution of field dependent interactions. In addition, there are many attractive features to time domain spectroscopy. Pulsed EPR allows for the design of experiments, which can specifically be used to study structure and dynamics of paramagnetic species and provide utmost resolution by separating interactions from each other. The combination of pulsed techniques and high frequencies is not only complimentary to continuous wave (CW) low frequency EPR but it also greatly increases the accessible information on paramagnetic species. High frequency, time domain EPR is still in its infancy. Spectrometers at W-band ([approximately] 95 GHz) are now available commercially but to date very few spectrometers operating at higher frequencies have been described. The spectrometer developed in the Francis Bitter Magnet Laboratory operates at a microwave (MW) frequency of 139.5 GHz corresponding to [approximately] 5 T magnetic field. The applications presented in this thesis illustrate the potential of high frequency, time domain EPR spectroscopy at 139.5 GHz in obtaining structural and mechanistic insights of several paramagnetic systems. Well resolved EPR spectra observed at 139.5 GHz of the stable tyrosine radical in ribonucleotide reductase (RNR) revealed the existence of a hydrogen bond in RNR from yeast, chapter 1. The bond length and orientation were determined from the nuclear frequencies of the proton, detected by orientation selective electron nuclear double resonance (ENDOR).
(cont.) The advantage of the time domain detection scheme is demonstrated in chapters 4, 5 and 6. A stimulated echo sequence is used to separate different organic radicals associated with the reduction chemistry and inhibition mechanisms of RNR. Using the dispersion in relaxation rates at high temperature ([approximately] 60 K) it is possible to filter the multi component spectrum. The assignment of new radicals is possible at high field, 5 T, due to the high resolution in g anisotropy. The findings support earlier proposals for the mechanism of nucleotide reduction and inhibition of this very important enzyme. To study photoexcited triplet molecules a light source was coupled to the high frequency spectrometer and the pulsed mode detection scheme was used to acquire EPR spectra. The new technique is demonstrated on several model systems. In addition to the basic advantages described above, high frequency EPR opens new frontiers for high spin systems, S >[or equal to] 1, with large spin-spin interaction. Because of the inverse field dependency of the zero field splitting, such systems may be totally EPR-silent at normal EPR frequencies. However their EPR spectra are accessible at high frequencies due to the reduction of linewidth. The Mn(II), S = 5/2, in superoxide dismutase (SOD) is a good example for such system.
by Galit Bar.
Ph.D.
ABDELHAMID, ESLAM. "Innovative Digital dc-dc Architectures for High-Frequency High-Efficiency Applications". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427310.
Texto completoCheng, Jung-hui 1960. "Steady-state and dynamic analysis of high-order resonant converters for high-frequency applications". Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282337.
Texto completoLou, Fan. "Mismatch-insensitive N-path multirate SC Sigma-Delta Modulator for high-frequency applications". Thesis, University of Macau, 2002. http://umaclib3.umac.mo/record=b1445818.
Texto completoTsang, Tommy 1977. "The design of low-voltage high frequency CMOS low noise amplifiers for future wireless applications /". Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=33998.
Texto completoThis thesis is concerned with one of the key building blocks, namely the Low Noise Amplifier (LNA). Several low-voltage LNA's were successfully implemented in a standard 0.18 mum CMOS technology, operating in the 5--9 GHz frequency band, targeted for future wireless applications. A new and very simple gain control mechanism is suggested for the first time, which does not affect the optimum noise and impedance matching. The 8--9 GHz prototypes are the highest LNA frequencies reported to-date in CMOS. All prototypes exhibit gain tuning ranges of over 10 dB, and can operate from a supply voltage as low as 0.7 V.
A design strategy for optimizing RF passive components (e.g. inductors, capacitors, and varactors) beyond 5 GHz is presented.
An attempt is made to explore the possibility of using Micro-Electro Mechanical Systems (MEMS) in the RF arena. (Abstract shortened by UMI.)
Karisan, Yasir. "Full-wave Electromagnetic Modeling of Electronic Device Parasitics for Terahertz Applications". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1419019102.
Texto completoLibros sobre el tema "High frequency electronic applications"
Reisch, M. High-Frequency Bipolar Transistors: Physics, Modeling, Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
Buscar texto completoFay, Patrick, Debdeep Jena y Paul Maki, eds. High-Frequency GaN Electronic Devices. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-20208-8.
Texto completoKhamas, Salam. High frequency applications of superconductors. Birmingham: University of Birmingham, 1988.
Buscar texto completoMartens, Luc. High-Frequency Characterization of Electronic Packaging. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5623-7.
Texto completoMartens, Luc. High-frequency characterization of electronic packaging. Boston: Kluwer Academic Publishers, 1998.
Buscar texto completoF, Nibler y Institution of Electrical Engineers, eds. High-frequency circuit engineering. London: Institution of Electrical Engineers, 1996.
Buscar texto completoReisch, M. High-frequency bipolar transistors: Physics, modeling, applications. Berlin: Springer, 2003.
Buscar texto completoSkutt, Glenn. Modeling multiwinding transformers for high-frequency applications. Durham, N.C: Duke University, 1988.
Buscar texto completoHigh-frequency bipolar transistors: Physics, modelling, applications. Berlin: Springer, 2003.
Buscar texto completoDurbin, Michael. All about high-frequency trading. New York, NY: McGraw-Hill, 2010.
Buscar texto completoCapítulos de libros sobre el tema "High frequency electronic applications"
Condori Quispe, Hugo O., Berardi Sensale-Rodriguez y Patrick Fay. "Plasma-Wave Propagation in GaN and Its Applications". En High-Frequency GaN Electronic Devices, 159–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20208-8_6.
Texto completoSollner, T. C. L. Gerhard, Elliott R. Brown, C. D. Parker y W. D. Goodhue. "High-Frequency Applications of Resonant-Tunneling Devices". En Electronic Properties of Multilayers and Low-Dimensional Semiconductor Structures, 283–96. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-7412-1_16.
Texto completoVélez, Adolfo y Hans-Walter Glock. "Superconducting Radio-Frequency for High-Current CW Applications". En Synchrotron Light Sources and Free-Electron Lasers, 1–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-04507-8_59-1.
Texto completoVélez, Adolfo y Hans-Walter Glock. "Superconducting Radio-Frequency for High-Current CW Applications". En Synchrotron Light Sources and Free-Electron Lasers, 581–601. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-23201-6_59.
Texto completoSommer, J. P., R. Dudek, B. Michel, M. Boheim y W. Hager. "Thermal and Mechanical Characterization of Electronic Packages in Extremely High Frequency Applications by Means of Finite Element Analysis". En Thermal Management of Electronic Systems II, 349–59. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5506-9_34.
Texto completoVallabhaneni, Manikantha, Sreenidhi Balki, P. S. V. N. K. Mani Gupta y Sonali Agrawal. "Power-Efficient Bulk-Driven MCML D-Latch for High-Frequency Applications". En Proceedings of Third International Conference on Communication, Computing and Electronics Systems, 749–60. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8862-1_49.
Texto completoCordier, Yvon, Rémi Comyn y Eric Frayssinet. "Molecular Beam Epitaxy of AlGaN/GaN High Electron Mobility Transistor Heterostructures for High Power and High-Frequency Applications". En Low Power Semiconductor Devices and Processes for Emerging Applications in Communications, Computing, and Sensing, 201–23. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503634-9.
Texto completoMaheswari, Y. Uma, A. Amudha y L. Ashok Kumar. "Effect of EMI on Electrical and Electronic System and Mitigation Methods for Low- and High-Frequency Applications". En Energy Audit and Management, 181–209. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003203810-6.
Texto completoRedgment, P. G. "High-Frequency Direction Finding in the Royal Navy: Development of Anti-U-Boat Equipment, 1941–5". En The Applications of Radar and other Electronic Systems in the Royal Navy in World War 2, 229–65. London: Palgrave Macmillan UK, 1995. http://dx.doi.org/10.1007/978-1-349-13623-0_6.
Texto completoGhosh, Monisha y Arindam Biswas. "Applications of Si~3C-SiC Heterostructures in High-Frequency Electronics up to the Terahertz Spectrum". En Lecture Notes in Electrical Engineering, 239–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4947-9_16.
Texto completoActas de conferencias sobre el tema "High frequency electronic applications"
Vanisri, T. "The opto-electronic high-frequency transconductor and circuit applications". En IEE Colloquium on `The RF Design Scene'. IEE, 1996. http://dx.doi.org/10.1049/ic:19960170.
Texto completoSato, Junya, Shin Teraki, Masaki Yoshida y Hisao Kondo. "High Performance Insulating Adhesive Film for High-Frequency Applications". En 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, 2017. http://dx.doi.org/10.1109/ectc.2017.94.
Texto completoTheuss, H., R. Weigel, J. Dangelmaier, M. Engl, K. Pressel, H. Knapp, W. Simburger, K. Gnannt, W. Eurskens y J. Hirtreiter. "A leadless packaging concept for high frequency applications". En 2004 Proceedings. 54th Electronic Components and Technology Conference. IEEE, 2004. http://dx.doi.org/10.1109/ectc.2004.1320371.
Texto completoRaj, P. Markondeya, Himani Sharma, G. Prashant Reddy, Nevin Altunyurt, Madhavan Swaminathan, Rao Tummala, Vijay Nair y David Reid. "Novel nanomagnetic materials for high-frequency RF applications". En 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, 2011. http://dx.doi.org/10.1109/ectc.2011.5898670.
Texto completoKim, Taeeui, Christian Romero, KyungO Kim, Taesung Jung y Sung Yi. "Embedded filter's temperature effect analysis for high frequency applications". En 2008 International Conference on Electronic Materials and Packaging (EMAP). IEEE, 2008. http://dx.doi.org/10.1109/emap.2008.4784263.
Texto completoKraft, J., G. Meinhardt, K. Molnar, T. Bodner y F. Schrank. "Electrical and Optical TSVs for High Frequency Photonic Applications". En 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). IEEE, 2016. http://dx.doi.org/10.1109/ectc.2016.188.
Texto completoJong-Woong Kim, Young-Chul Lee, Jae-Hoon Ko, Wansoo Nah y Seung-Boo Jung. "Transmission property of adhesive interconnect for high frequency applications". En 2007 International Conference on Electronic Materials and Packaging (EMAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/emap.2007.4510286.
Texto completoOgawa, N., H. Onozeki, T. Tanabe y T. Kumakura. "Profile-Free Copper Foil for High-Density Packaging Substrates and High-Frequency Applications". En 2005 Proceedings. 55th Electronic Components and Technology Conference. IEEE, 2005. http://dx.doi.org/10.1109/ectc.2005.1441305.
Texto completo"Tape Automated Bonding Packages: Electrical Considerations For High Frequency Applications". En Proceedings of Japan International Electronic Manufacturing Technology Symposium. IEEE, 1993. http://dx.doi.org/10.1109/iemt.1993.639798.
Texto completoLee, Tzu Nien, John H. Lau, Cheng-Ta Ko, Tim Xia, Eagle Lin, Kai-Ming Yang, Puru Bruce Lin et al. "Characterization of Low Loss Dielectric Materials for High-Speed and High-Frequency Applications". En 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). IEEE, 2022. http://dx.doi.org/10.1109/ectc51906.2022.00351.
Texto completoInformes sobre el tema "High frequency electronic applications"
van der Heijden, Joost. Optimizing electron temperature in quantum dot devices. QDevil ApS, marzo de 2021. http://dx.doi.org/10.53109/ypdh3824.
Texto completoAntonsen, T. M. Jr, W. W. Destler, V. Granatstein y B. Levush. Microwave generation for magnetic fusion energy applications. Task A, Free electron lasers with small period wigglers; Task B, Theory and modeling of high frequency, high power gyrotron operation: Progress report, May 1, 1993--May 1, 1994. Office of Scientific and Technical Information (OSTI), mayo de 1994. http://dx.doi.org/10.2172/10151962.
Texto completoArmendariz, M. G., G. R. Hadley y M. E. Warren. Advanced packaging technology for high frequency photonic applications. Office of Scientific and Technical Information (OSTI), marzo de 1996. http://dx.doi.org/10.2172/211590.
Texto completoArchambeau, C. Applications of discrimination methods to high frequency seismic data. Office of Scientific and Technical Information (OSTI), mayo de 1989. http://dx.doi.org/10.2172/7245131.
Texto completoBACA, ALBERT G., RONALD D. BRIGGS, ANDREW A. ALLERMAN, CHRISTINE C. MITCHELL, ARTHUR J. FISCHER, CAROL I. ASHBY, ALAN F. WRIGHT y RANDY J. SHUL. High Al-Content AlInGaN Devices for Next Generation Electronic and Optoelectronic Applications. Office of Scientific and Technical Information (OSTI), diciembre de 2001. http://dx.doi.org/10.2172/789599.
Texto completoSchmitt, R. L., R. J. Williams y J. D. Matthews. High-frequency scannerless imaging laser radar for industrial inspection and measurement applications. Office of Scientific and Technical Information (OSTI), noviembre de 1996. http://dx.doi.org/10.2172/419074.
Texto completoJakaboski, Blake Elaine, Chung-Nin Channy Wong, Dale L. Huber, Michael J. Rightley y John Allen Emerson. Advancement in thermal interface materials for future high-performance electronic applications. Part 1. Office of Scientific and Technical Information (OSTI), febrero de 2006. http://dx.doi.org/10.2172/902216.
Texto completoBarbee, T. W. Jr y G. W. Johnson. High energy density capacitors for power electronic applications using nano-structure multilayer technology. Office of Scientific and Technical Information (OSTI), septiembre de 1995. http://dx.doi.org/10.2172/258017.
Texto completoGivot, Brad, Justin Johnson, Sung Kim, Luke E. Schallinger y James Baker-Jarvis. Characterization of tissue-equivalent materials for high-frequency applications (200 MHz to 20 GHz). Gaithersburg, MD: National Bureau of Standards, 2010. http://dx.doi.org/10.6028/nist.tn.1554.
Texto completoLyo, Sungkwun Kenneth, Wei Pan, John Louis Reno, Joel Robert Wendt y Daniel Lee Barton. LDRD final report on Bloch Oscillations in two-dimensional nanostructure arrays for high frequency applications. Office of Scientific and Technical Information (OSTI), septiembre de 2008. http://dx.doi.org/10.2172/948689.
Texto completo