Literatura académica sobre el tema "High-Current pulse"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "High-Current pulse".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "High-Current pulse"
Godun, D. V., S. V. Bordusau y G. P. Budzko. "Output Current Control System of a High Voltage Electric Pulse Generator for Plasma Excitation". PLASMA PHYSICS AND TECHNOLOGY 6, n.º 1 (2019): 7–9. http://dx.doi.org/10.14311/ppt.2019.1.7.
Texto completoDeke Yan, Deke Yan, Yongsheng Gou Yongsheng Gou, Zhiyuan Song Zhiyuan Song, Chuandong Sun Chuandong Sun y Shaolan Zhu Shaolan Zhu. "Study on the circuit producing high-speed pulse with high peak current". Chinese Optics Letters 9, s1 (2011): s10307–310310. http://dx.doi.org/10.3788/col201109.s10307.
Texto completoFan, Xian Guang, Zhen Bang Hu, Ying Jie Xu, Xiu Fen Wang, Xin Wang y Yong Zuo. "Pulsed Driver Control System for High-Power LED". Applied Mechanics and Materials 536-537 (abril de 2014): 1178–82. http://dx.doi.org/10.4028/www.scientific.net/amm.536-537.1178.
Texto completoHu, L., B. Gao, J. K. Lv, S. C. Sun, Y. Hao y G. F. Tu. "Halo Evolution of Hypereutectic Al-17.5Si Alloy Treated with High-Current Pulsed Electron Beam". Journal of Nanomaterials 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/806151.
Texto completoSun, Yue, Kui Li, Bo Gao, Pengyue Sun, Haiyang Fu, Zhuang Liu y Juntai Yin. "Study on microstructure and wear resistance of Zr-17Nb alloy irradiated by high current pulsed electron beam". REVIEWS ON ADVANCED MATERIALS SCIENCE 59, n.º 1 (6 de noviembre de 2020): 514–22. http://dx.doi.org/10.1515/rams-2020-0047.
Texto completoKuznetsov, V. A., G. D. Polkovnikov, V. E. Gromov, V. A. Kuznetsova y O. A. Peregudov. "High power current pulse generator based on reversible thyristor converter". Izvestiya. Ferrous Metallurgy 62, n.º 12 (15 de enero de 2020): 964–71. http://dx.doi.org/10.17073/0368-0797-2019-12-964-971.
Texto completoPark, Hyeong-Gyu, Beom-Soo Kang y Jeong Kim. "Numerical Modeling and Experimental Verification for High-Speed Forming of Al5052 with Single Current Pulse". Metals 9, n.º 12 (5 de diciembre de 2019): 1311. http://dx.doi.org/10.3390/met9121311.
Texto completoWei, Xianqi, Xiaoli Wang, Xin Li y Weihua Liu. "Electronic Pulses from Pulsed Field Emission of CNT Cathodes". Journal of Nanomaterials 2018 (2018): 1–6. http://dx.doi.org/10.1155/2018/4396430.
Texto completoKandratsyeu, Aleh, Uladzimir Sabaleuski, Luis Redondo y Andrei G. Pakhomov. "Four Channel 6.5 kV, 65 A, 100 ns–100 µs Generator with Advanced Control of Pulse and Burst Protocols for Biomedical and Biotechnological Applications". Applied Sciences 11, n.º 24 (11 de diciembre de 2021): 11782. http://dx.doi.org/10.3390/app112411782.
Texto completoFathimulla, A., H. Hier y J. Abrahams. "High-current pulse-doped GaInAs MESFET". Electronics Letters 24, n.º 8 (1988): 498. http://dx.doi.org/10.1049/el:19880338.
Texto completoTesis sobre el tema "High-Current pulse"
Palomera-Arias, Rogelio 1972. "PIN diode switch circuit for short time high current pulse signal". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47505.
Texto completoLanz, B. (Brigitte). "Compact current pulse-pumped GaAs–AlGaAs laser diode structures for generating high peak-power (1–50 watt) picosecond-range single optical pulses". Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526213569.
Texto completoTiivistelmä ”Gain switching” (vahvistuskytkentä) on tunnettu tekniikka lyhyiden (<100 ps) optisten pulssien generoimiseen laserdiodeilla. Kaupallisia laserdiodirakenteita käyttäen optinen energia rajoittuu kuitenkin 10…100 pJ:n tasolle. Tällöinkin, erityisesti suurilla energiatasoilla, optisessa pulssissa ilmenee voimakkaita jälkioskillaatioita. Tässä väitöskirjassa tutkittiin ja kehitettiin kokeellisesti varmennettuja laserdiodilähetinrakenteita tavoitteena saavuttaa >1 nJ:n optisen pulssin energia ja ~100 ps:n pulssinpituus gain-switching -toimintamoodissa. Tavoitteena oli myös minimoida jälkipulssien energia. Tutkimuksen pääsisältönä on kaksi toimintaperiaatetta: Toisessa tekniikassa päähuomio kohdistuu laseridiodin virta-ajuriin, johon kehitettiin elektroniikka, joka kykenee tuottamaan nopeita virtapulsseja laajalla pulssivirta-alueella. Virtapulssin nopeuden kasvattamisen (<1 ns) osoitettiin edistävän gain switching -ilmiötä. Toisena tekniikkana tutkittiin räätälöityä laserdiodirakennetta, joka sisäisen toimintansa perusteella tuottaa dynaamisessa ohjaustilanteessa tehokkaan ja nopean laserpulssin. Kummankin periaatteen osoitettiin toimivan huonelämpötilassa (23±3°C) ilman erillistä jäähdytystä. Ensimmäisessä ratkaisussa käytettiin nopeaa gallium-arsenidi (GaAs) -avalanchetransistoria virtakytkimenä, jolla saavutettiin <1 ns FWHM injektiovirtapulssi 10 A:n virtatasolla. Tällainen virtapulssi on riittävän lyhyt virittämään ”gain switching” -ilmiön nJ-energiatasolla. Lupaavin rakenne toiseksi ratkaisuksi oli reunaemittoiva puolijohdelaseri, jossa epäsymmetrinen aaltoputki ja aktiivinen alue ovat sijoitettu normaalista laserdiodirakenteesta poiketen rinnakkain. Tällä rakenteella voitiin tuottaa ~100 ps levyisiä (FWHM) ja >3 nJ optisen kokonaisenergian omavia laserpulsseja edullisella pii-pohjaisella (Si) elektroniikalla luoduilla 1.5–2 ns:n (FWHM) ≤17 A injektiovirtapulsseilla. Suorituskykyä saatiin edelleen parannettua istuttamalla saturoiva absorbaattori (SA) laserin optiseen onteloon. Tämän osoitettiin vähentävän jälkioskillaatioiden muodostumista
Bendixsen, Luis Sebastian Caballero. "The design and construction of a compact, high-current pulsed power generator based on multiple low impedance pulse forming lines and networks". Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526548.
Texto completoBloomfield, Aaron Paul. "A High Frequency Alternating Current Battery Heater for Military Vehicles". University of Toledo / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1302312903.
Texto completoGamir, Luis Palafox. "A new method for the determination of the entry position of #gamma#-rays in high purity germanium detectors by current pulse analysis". Thesis, Cranfield University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387640.
Texto completoPalafox, Gamir Luis. "A new method for the determination of the entry position of γ-rays [gamma rays] in high purity germanium detectors by current pulse analysis". Thesis, Cranfield University, 1997. http://dspace.lib.cranfield.ac.uk/handle/1826/850.
Texto completoPalafox, Gamir Luis. "A new method for the determination of the entry position of y-rays [gamma rays] in high purity germanium detectors by current pulse analysis". Thesis, Cranfield University, 1997. http://hdl.handle.net/1826/850.
Texto completoHinde, David Derek. "Corona discharges on the surfaces of high voltage composite insulators". Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/29320/2/David_Hinde_Thesis.pdf.
Texto completoHinde, David Derek. "Corona discharges on the surfaces of high voltage composite insulators". Queensland University of Technology, 2009. http://eprints.qut.edu.au/29320/.
Texto completoShahriari, Ejlal. "Commutateurs à semi-conducteurs rapides et à courant élevé pour les applications de puissance pulsée". Electronic Thesis or Diss., Pau, 2024. https://theses.hal.science/tel-04818494.
Texto completoMicro-second range high-current pulses (100s kA) are applied to generate megagauss-range magnetic fields. This high pulsed power technology has been employed in inertial fusion research, X-pinch, and high-energy-density physics. Moreover, a number of industrial applications such as magnetic pulse welding and rock fracturing require high average power, repeatability, and a reliable high-current pulse generator with a long lifespan. Hence, a fast solid-state switch development operating in the range of several hundred kA is of considerable importance.A fast high-current switch is one of the most complex components in a pulsed power generator. Historically, only gas-filled switches could operate under such extreme conditions. However, gas-filled switches have several well-known disadvantages, including low pulse repetition frequency, short lifetimes, and instability in triggering. They are also expensive to use, often requiring gas flow systems, costly gases, and recirculating chambers of gas for repetitive operation. These disadvantages have hindered the widespread adoption of pulsed power technologies.Recent advancements in semiconductor physics and technology have introduced solid-state switches into the pulsed power domain. In particular, silicon high-voltage structures triggered in impact-ionization wave mode present a promising solution for fast high-current solid-state switches (10s-100s kA and 10s kA/μs).The main goal of this thesis is to experimentally demonstrate the capability of high-voltage thyristors to switch fast-high current pulses. to accomplish this goal, two major axes of study are defined as the experimental and theoretical studies. In the experimental work, the main focus is determined based on a key limitation highlighted in the literature, i.e., the cross-sectional area of the thyristor. To eliminate this limitation several solutions have been investigated in this thesis including (i) triggering the largest commercially available thyristor, 100 mm wafer diameter with 5.2 kV static voltage breakdown. (ii) Parallel triggering of an assembly of two and four high-voltage thyristors. (iii) Series-parallel configuration in order to further increase blocking voltage and current capability of the switch simultaneously. In terms of theoretical study, the numerical simulation is conducted to shed light on the avalanche breakdown phenomena in impact-ionization switching mode
Libros sobre el tema "High-Current pulse"
Workshop on Short Pulse High Current Cathodes (1990 Bendor, France). Proceedings of the Workshop on Short Pulse High Current Cathodes, Bendor, France, 18-22 June 1990. Gif-sur-Yvette, France: Editions Frontieres, 1990.
Buscar texto completoWelsh, David S. Current density limitations in a fast-pulsed high-voltage vacuum diode. Monterey, Calif: Naval Postgraduate School, 1992.
Buscar texto completoStanton, Bonita. Physics and technology of high current discharges in dense gas media and flows. Hauppauge, N.Y: Nova Science Publishers, 2009.
Buscar texto completoWright, A. G. Electronics for PMTs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0014.
Texto completoWright, A. G. Linear performance. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0009.
Texto completoTENS-like devices. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199673278.003.0011.
Texto completoMarkov, Marko S. y Sinerik N. Ayrapetyan. Bioelectromagnetics Current Concepts: The Mechanisms of the Biological Effect of Extremely High Power Pulses. Springer, 2006.
Buscar texto completoZantis, Franz Peter. Generating of Short Pulses with High Amplitudes by Using of Standard Current-Feedback-Amplifier. GRIN Verlag GmbH, 2014.
Buscar texto completoKasprzak, Jaroslaw D., Anita Sadeghpour y Ruxandra Jurcut. Doppler echocardiography. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0003.
Texto completoWright, A. G. Voltage dividers. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0013.
Texto completoCapítulos de libros sobre el tema "High-Current pulse"
Chowdhury, Ankur, Alok K. Saxena y K. D. Joshi. "Coupled Electromagnetic–Structural–Thermal Simulations for Designing High-Current Pulse-Power Inductors for Pulse Shaping of High-Magnitude, Long-Duration Current Pulses". En Lecture Notes in Electrical Engineering, 355–62. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0337-1_35.
Texto completoKolacek, K., J. Straus, J. Schmidt, O. Frolov, V. Prukner, J. Sobota, T. Fort y A. Shukurov. "EUV radiation of pulse high-current proximity-wallstabilized discharges". En Springer Proceedings in Physics, 263–68. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1186-0_29.
Texto completoShen, Dezhen y Xiwu Fan. "Free Exciton Emission in ZnSxSe1−x MIS Diodes with High Pulse Current Density". En Springer Proceedings in Physics, 376–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93430-8_76.
Texto completoLi, Yuan Yuan, X. Q. Li, Yan Long, Ming Shao y Wei Xia. "Pulse Electric Current Sintering of Iron-Base Powders Prepared by High Energy Milling". En Advances in Machining & Manufacturing Technology VIII, 445–49. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-999-7.445.
Texto completoZhanhong, Xie, Wu Lizhou, Zhao Yingjie, Gou Xueke, Geng Hao, Zhao Xi y Qiu Qunxian. "Analysis and Test of Influence of MA Pulse High Current on Electromagnetic Vacuum Relay". En Lecture Notes in Electrical Engineering, 527–36. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0451-8_54.
Texto completoJiwu, Li y Cai Weijian. "Comparative Study of Distribution of Collecting Plate Current Density on Electrostatic Precipitations with High Direct Current and Pulse Power Supply". En Electrostatic Precipitation, 337–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89251-9_66.
Texto completoCoeur, F., Y. Arnal, J. Pelletier, O. Lesaint, O. Maulat y M. Roche. "Monoatomic Ion Rich DECR Plasmas for Ion Implantation by Plasma Immersion Using a New High Voltage — High Current Pulse Generator". En Advanced Technologies Based on Wave and Beam Generated Plasmas, 493–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-0633-9_32.
Texto completoTanyag, Rico Mayro P., Bruno Langbehn, Thomas Möller y Daniela Rupp. "X-Ray and XUV Imaging of Helium Nanodroplets". En Topics in Applied Physics, 281–341. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2_7.
Texto completoDenman, C. A. y L. A. Schlie. "Sensitive High-Temporal-Resolution Tof Electron Drift Tube; Asymmetrical Current Pulse Observation and Determination of Vd, DLand D3". En Nonequilibrium Effects in Ion and Electron Transport, 359. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0661-0_31.
Texto completoDehmollaian, Eshagh, Bernhard Etzlinger, Philipp Peterseil y Andreas Springer. "AI-Enhanced UWB-Based Localisation in Wireless Networks". En Intelligent Secure Trustable Things, 201–16. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54049-3_12.
Texto completoActas de conferencias sobre el tema "High-Current pulse"
Leung, Ka-Ngo. "High current short pulse ion sources". En New modes of particle acceleration: Techniques and sources. AIP, 1997. http://dx.doi.org/10.1063/1.52978.
Texto completoJones, C. C. R. "High current pulse testing in aircraft lightning clearance". En Pulsed Power Seminar. IEE, 2003. http://dx.doi.org/10.1049/ic:20030073.
Texto completoFerrero, R., M. Marracci y B. Tellini. "Analytical study of high pulse current shunts". En 2011 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2011. http://dx.doi.org/10.1109/imtc.2011.5944280.
Texto completoNashilevskiy, A. V., G. G. Kanaev, V. I. Krauz, V. V. Myalton, G. E. Remnev y V. P. Vinogradov. "High-current pulse generator for plasma focus". En 2011 IEEE Pulsed Power Conference (PPC). IEEE, 2011. http://dx.doi.org/10.1109/ppc.2011.6191540.
Texto completoShoihet, Arthur, Moshe Shvartsas, Beni Gdaliahu y Itzik Edry. "High current short pulse generator for pulse magneto-oscillation (PMO) research". En 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel (IEEEI 2012). IEEE, 2012. http://dx.doi.org/10.1109/eeei.2012.6376977.
Texto completoAnanyeva, Ludmila, Sergey Ilenok, Mikhail Korovkin, Evgeniy Kumpyak y Andrey Zherlitsyn. "Production of High-Purity Quartz Concentrate by Electrical Pulse Fragmentation". En 2018 20th International Symposium on High-Current Electronics (ISHCE). IEEE, 2018. http://dx.doi.org/10.1109/ishce.2018.8521215.
Texto completoHartmann, W. "Design of a high current pulse generator for magnetoforming". En Pulsed Power Seminar. IEE, 2003. http://dx.doi.org/10.1049/ic:20030090.
Texto completoObukhov, V. A., A. V. Ovchinnikov, A. F. Piskunkov, A. A. Pertsev y N. P. Shishaev. "High-Speed Macroparticle Destruction in a High-Current Pulse Discharge". En 2008 14th Symposium on Electromagnetic Launch Technology. IEEE, 2008. http://dx.doi.org/10.1109/elt.2008.131.
Texto completoSchmidt, J., K. Kolacek, O. Frolov, V. Prukner y J. Straus. "High Resolved Spectra of Pulse High Current Capillary Discharge Plasma". En 2008 IEEE International Power Modulators and High Voltage Conference (IPMC). IEEE, 2008. http://dx.doi.org/10.1109/ipmc.2008.4743677.
Texto completoHarutyunyan, R. V. y T. R. Harutyunyan. "Simulation of high-current pulse to the electrode". En 2016 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE, 2016. http://dx.doi.org/10.1109/apede.2016.7878973.
Texto completoInformes sobre el tema "High-Current pulse"
Leung, K. N. High current short pulse ion sources. Office of Scientific and Technical Information (OSTI), agosto de 1996. http://dx.doi.org/10.2172/414414.
Texto completoDecker, Franz-Josef. High Current, Long Beam Pulse with SLED. Office of Scientific and Technical Information (OSTI), abril de 1999. http://dx.doi.org/10.2172/10200.
Texto completoHo, Ching-Hung. A high current, short pulse electron source for wakefield accelerators. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/7121494.
Texto completoHo, Ching-Hung. A high current, short pulse electron source for wakefield accelerators. Office of Scientific and Technical Information (OSTI), enero de 1992. http://dx.doi.org/10.2172/10115938.
Texto completoMiller, J. D., R. F. Schneider, H. S. Uhm, K. T. Nguyen y K. W. Struve. Pulse Shaping a High-Current Relativistic Electron Beam in Vacuum. Fort Belvoir, VA: Defense Technical Information Center, junio de 1990. http://dx.doi.org/10.21236/ada230674.
Texto completoAnders, A., I. Brown, R. MacGill y M. Dickinson. High ion charge states in a high-current, short-pulse, vacuum arc ion source. Office of Scientific and Technical Information (OSTI), septiembre de 1995. http://dx.doi.org/10.2172/132736.
Texto completoWang, Guiding. Development of Long-Pulse Heating and Current Drive Actuators and Operational Techniques Compatible with a High-Z Divertor and First Wall. Office of Scientific and Technical Information (OSTI), noviembre de 2017. http://dx.doi.org/10.2172/1407405.
Texto completoTynan, George. Development of long-pulse heating & current drive actuators & operational techniques compatible with a high-Z divertor & first wall. Office of Scientific and Technical Information (OSTI), enero de 2018. http://dx.doi.org/10.2172/1416179.
Texto completoWukitch, Stephen. Development of long-pulse heating and current drive actuators and operational techniques compatible with a high-Z divertor and first wall. Office of Scientific and Technical Information (OSTI), mayo de 2019. http://dx.doi.org/10.2172/1511865.
Texto completoMordijck, Saskia. Final Technical Report: Development of long-pulse heating and current drive actuators and operational techniques compatible with a high-Z divertor and first wall. Office of Scientific and Technical Information (OSTI), marzo de 2018. http://dx.doi.org/10.2172/1430223.
Texto completo