Literatura académica sobre el tema "Hétérostructures Van der Waals"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hétérostructures Van der Waals".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hétérostructures Van der Waals"
Arunan, E. "van der Waals". Resonance 15, n.º 7 (julio de 2010): 584–87. http://dx.doi.org/10.1007/s12045-010-0043-3.
Texto completoHan, Jianing. "Two-Dimensional Six-Body van der Waals Interactions". Atoms 10, n.º 1 (24 de enero de 2022): 12. http://dx.doi.org/10.3390/atoms10010012.
Texto completoBernasek, Steven L. "Van der Waals rectifiers". Nature Nanotechnology 8, n.º 2 (6 de enero de 2013): 80–81. http://dx.doi.org/10.1038/nnano.2012.242.
Texto completoGeim, A. K. y I. V. Grigorieva. "Van der Waals heterostructures". Nature 499, n.º 7459 (julio de 2013): 419–25. http://dx.doi.org/10.1038/nature12385.
Texto completoLevitov, L. S. "Van Der Waals' Friction". Europhysics Letters (EPL) 8, n.º 6 (15 de marzo de 1989): 499–504. http://dx.doi.org/10.1209/0295-5075/8/6/002.
Texto completoCapozziello, S., S. De Martino y M. Falanga. "Van der Waals quintessence". Physics Letters A 299, n.º 5-6 (julio de 2002): 494–98. http://dx.doi.org/10.1016/s0375-9601(02)00753-3.
Texto completoBärwinkel, Klaus y Jürgen Schnack. "van der Waals revisited". Physica A: Statistical Mechanics and its Applications 387, n.º 18 (julio de 2008): 4581–88. http://dx.doi.org/10.1016/j.physa.2008.03.019.
Texto completoLevelt Sengers, J. M. H. y J. V. Sengers. "van der Waals fund, van der Waals laboratory and Dutch high-pressure science". Physica A: Statistical Mechanics and its Applications 156, n.º 1 (marzo de 1989): 1–14. http://dx.doi.org/10.1016/0378-4371(89)90107-6.
Texto completoWu, Yan-Fei, Meng-Yuan Zhu, Rui-Jie Zhao, Xin-Jie Liu, Yun-Chi Zhao, Hong-Xiang Wei, Jing-Yan Zhang et al. "The fabrication and physical properties of two-dimensional van der Waals heterostructures". Acta Physica Sinica 71, n.º 4 (2022): 048502. http://dx.doi.org/10.7498/aps.71.20212033.
Texto completoAo, Hong Rui, Ming Dong, Xi Chao Wang y Hong Yuan Jiang. "Analysis of Pressure Distribution on Head Disk Air Bearing Slider Involved Van der Waals Force". Applied Mechanics and Materials 419 (octubre de 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.419.111.
Texto completoTesis sobre el tema "Hétérostructures Van der Waals"
Henck, Hugo. "Hétérostructures de van der Waals à base de Nitrure". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS319/document.
Texto completoThis thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems
Nayak, Goutham. "Amélioration des propriétés physiques de matériaux de basse-dimensionnalité par couplage dans des hétérostructures Van der Waals". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY084/document.
Texto completoThe extraordinary intrinsic properties of low dimensional materials depend highly on the environment they are subjected to. Hence they need to be prepared, processed and characterized without defects. In this thesis, I discuss about how to control the environment of low dimensional nanomaterials such as graphene, MoS2 and carbon nanotubes to preserve their intrinsic physical properties. Novel solutions for property enhancements are discussed in depth. In the first part, we fabricate state-of-the-art, edge-contacted, graphene Van der Waals(VdW) heterostructuredevices encapsulated in hexagonal-boron nitride(hBN), to obtain ballistic transport. We use a technique based on 1/f-noise measurements to probe bulk and edge transport during integer and fractional Quantum Hall regimes. In the second part, the same fabrication concept of VdW heterostructures has been extended to encapsulate monolayer MoS2 in hBN to improve optical properties. In this regard we present an extensive study about the origin and characterization of intrinsic and extrinsic defects and their affect on optical properties. Further, we describe a technique to probe the interlayer coupling along with the generation of light with spatialresolution below the diffraction limit of light. Finally, we discuss a natural systemic process to enhance the mechanical properties of natural polymer silk using HipCO-made single walled carbon nanotubes as a food for silkworm
Lorchat, Étienne. "Optical spectroscopy of heterostructures based on atomically-thin semiconductors". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE035.
Texto completoDuring this thesis, we have fabricated and studied by optical spectroscopy, van der Waals heterostructures composed of semiconductor monolayers (transition metal dichalcogenides, TMD) coupled to a graphene monolayer or to a plasmonic resonator. We have observed significant changes in the dynamics of the TMD optically excited states (excitons) when it is in direct contact with graphene. Graphene neutralizes the TMD monolayer and enables non-radiative transfer of excitons within less than a few picoseconds. This energy transfer process may be accompanied by a considerably less efficient, extrinsic photodoping. The reduced lifetime of TMD excitons in the presence of graphene has been exploited to show that their valley pseudo-spin maintains a high degree of polarization and coherence up to room temperature. Finally, by strongly coupling TMD excitons to the modes of a geometric phase plasmonic resonator, we have demonstrated, at room temperature, that the momentum of the resulting chiral polaritons (chiralitons) is locked to their valley pseudo-spin
Froehlicher, Guillaume. "Optical spectroscopy of two-dimensional materials : graphene, transition metal dichalcogenides and van der Waals heterostructures". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE033/document.
Texto completoIn this project, we have used micro-Raman and micro-photoluminescence spectroscopy to study two-dimensional materials (graphene and transition metal dichalcogenides) and van der Waals heterostructures. First, using electrochemically-gated graphene transistors, we show that Raman spectroscopy is an extremely sensitive tool for advanced characteri-zations of graphene samples. Then, we investigate the evolution of the physical properties of N-layer semiconducting transition metal dichalcogenides, in particular molybdenum ditelluride (MoTe2) and molybdenum diselenide (MoSe2). In these layered structures, theDavydov splitting of zone-center optical phonons is observed and remarkably well described by a ‘textbook’ force constant model. We then describe an all-optical study of interlayer charge and energy transfer in van der Waals heterostructures made of graphene and MoSe2 monolayers. This work sheds light on the very rich photophysics of these atomically thin two-dimensional materials and on their potential in view of optoelectronic applications
Di, Felice Daniela. "Electronic structure and transport in the graphene/MoS₂ heterostructure for the conception of a field effect transistor". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS267/document.
Texto completoThe isolation of graphene, a single stable layer of graphite, composed by a plane of carbon atoms, demonstrated the possibility to separate a single layer of atomic thickness, called bidimensional (2D) material, from the van der Waals (vdW) solids. Thanks to their stability, 2D materials can be used to form vdW heterostructures, a vertical stack of different 2D crystals maintained together by the vdW forces. In principle, due to the weakness of the vdW interaction, each layer keeps its own global electronic properties. Using a theoretical and computational approach based on the Density Functional Theory (DFT) and Keldish-Green formalism, we have studied graphene/MoS₂ heterostructure. In this work, we are interested in the specific electronic properties of graphene and MoS₂ for the conception of field effect transistor: the high mobility of graphene as a basis for high performance transistor and the gap of MoS₂ able to switch the device. First, the graphene/MoS₂ interface is electronically characterized by analyzing the effects of different orientations between the layers on the electronic properties. We demonstrated that the global electronic properties as bandstructure and Density of State (DOS) are not affected by the orientation, whereas, by mean of Scanning Tunneling Microscope (STM) images, we found that different orientations leads to different local DOS. In the second part, graphene/MoS₂ is used as a very simple and efficient model for Field Effect Transistor. The role of the vdW heterostructure in the transistor operation is analyzed by stacking additional and alternate graphene and MoS₂ layers on the simple graphene/MoS₂ interface. We demonstrated that the shape of the DOS at the gap band edge is the fundamental parameter in the switch velocity of the transistor, whereas the additional layers do not improve the transistor behavior, because of the independence of the interfaces in the vdW heterostructures. However, this demonstrates the possibility to study, in the framework of DFT, the transport properties of more complex vdW heterostructures, separating the single interfaces and reducing drastically the calculation time. The 2D materials are also studied in the role of a tip for STM and Atomic Force Microscopy (AFM). A graphene-like tip, tested on defected MoS₂, is compared with a standard copper tip, and it is found to provide atomic resolution in STM images. In addition, due to vdW interaction with the sample, this tip avoids the contact effect responsible for the transfer of atoms between the tip and the sample. Furthermore, the analysis of defects can be very useful since they induce new peaks in the gap of MoS₂: hence, they can be used to get a peak of current representing an interesting perspective to improve the transistor operation
Ben, Jabra Zouhour. "Study of new heterostructures : silicene on graphene". Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0583.
Texto completoThe topic of this thesis deals with the study of the growth and properties of silicene (Si-ene) on graphene (Gr) on 6H-SiC(0001) with the final goal of forming free-standing (FS) Si-ene on an insulating or semiconductor substrate. I have described the substrate as a function of the CVD processing conditions. When the proportion of H2 is low it is possible to obtain homogeneous Gr on buffer layer (BL) on SiC. The STM and LEED show the superposition of the Gr mesh and the BL reconstruction representative of the epitaxial Gr. When the proportion of H2 is high, the resulting Gr layer is fully hydrogenated. This is a new result as no hydrogen intercalation process has been able to fully hydrogenate (6x6)Gr samples epitaxial on BL until now. For intermediate proportions of H2/Ar, the coexistence of (6x6)Gr and H-Gr is observed. Depending on the proportion of H2 in the gas mixture, either the SiC surface remains passivated during the entire Gr growth and H-Gr is obtained, or the H2 partially or totally desorbs and either both structures coexist or full plate (6x6)Gr is obtained. I have studied the MBE growth of Si-ene on (6x6)Gr. I have shown that it is possible to form Si-ene puddles for deposit thicknesses <0.5MC. We observe the presence of flat areas of 0.2-0.3nm thickness corresponding to a Si-ene monolayer, surrounded by 3D dendritic islands of Si. The Raman spectra show a peak up to 563cm-1 which is the closest value to Si-ene FS ever obtained. This demonstrates the formation of quasi-FS Si-ene. This work contributes to a better understanding of the CVD growth mechanism of Gr and to the advancement of research in the field of epitaxial growth of 2D materials
Marcon, Paul. "Calcul ab-initio des propriétés physiques d'hétérostructures associant des matériaux ferromagnétiques à anisotropie magnétique perpendiculaire et des dichalcogénures de métaux de transition". Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30273.
Texto completoThe ability to synthesize heterostructures made up of 2D materials provides significant opportunities for improving current spintronic components or developing new devices. Thus, the control and deep understanding of the physical properties of these systems become a critical technological challenge. During this thesis, we examined heterostructures composed of transition metal dichalcogenide (TMDC) monolayers and ferromagnetic crystals exhibiting perpendicular magnetic anisotropy, using ab initio calculations based on density functional theory (DFT). We focus on three main goals: (i) understanding how to use magnetic proximity to lift valley degeneracy and quantify the valley Zeeman effect; (ii) assessing the possibility of injecting spin-polarized electron gas into specific valleys of the TMDC sheet; (iii) investigating the impact of proximity on spin-orbit coupling in the TMDC sheet and on the Rashba and Dresselhaus phenomena in these systems. We first studied multilayers with an electrode made up of a metal and a non-2D insulating barrier. In the Fe/MgO/MoS2 system, we computed that a spontaneous electron transfer occurs from the Fe layer to the MoS2 monolayer, leading to the formation of a non-spin-polarized electron gas. We established a model explaining the competition between Rashba and Dresselhaus-type spin-orbit effects and magnetic proximity effect on the MoS2 valence bands: This model allowed us to show that proximity effect predominate for thin MgO (<0.42 nm) and tend to disappear in favor of spin-orbit effects for thicker layers (> 1.06 nm). We predicted that stronger spin-orbit effects can be achieved by replacing the Fe electrode with a non-magnetic V electrode. To boost the magnetic proximity effects, we finally decided to study [Co1Ni2]n/h-BN/WSe2 heterostructures, in which [Co1Ni2]n is a superlattice with perpendicular magnetic anisotropy, and h-BN is a two-dimensional insulator. For this system, we predict that it could be possible to have a spin polarization of the valleys at the K and K' points. Ultimately, we explored the unique properties of the van der Waals heterostructure Graphene/CrI3/WSe2, where the magnetic electrode is also replaced by 2D materials
Mouafo, Notemgnou Louis Donald. "Two dimensional materials, nanoparticles and their heterostructures for nanoelectronics and spintronics". Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE002/document.
Texto completoThis thesis investigates the charge and spin transport processes in 0D, 2D nanostructures and 2D-0D Van der Waals heterostructures (VdWh). The La0.67Sr0.33MnO3 perovskite nanocrystals reveal exceptional magnetoresistances (MR) at low temperature driven by their paramagnetic shell magnetization independently of their ferromagnetic core. A detailed study of MoSe2 field effect transistors enables to elucidate a complete map of the charge injection mechanisms at the metal/MoSe2 interface. An alternative approach is reported for fabricating 2D-0D VdWh suitable for single electron electronics involving the growth of self-assembled Al nanoclusters over the graphene and MoS2 surfaces. The transparency the 2D materials to the vertical electric field enables efficient modulation of the electric state of the supported Al clusters resulting to single electron logic functionalities. The devices consisting of graphene exhibit MR attributed to the magneto-Coulomb effect
Bezzi, Luca. "Materiali 2D van der Waals". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Buscar texto completoBoddison-Chouinard, Justin. "Fabricating van der Waals Heterostructures". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38511.
Texto completoLibros sobre el tema "Hétérostructures Van der Waals"
Parsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.
Buscar texto completoHolwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.
Texto completoL, Neal Brian, Lenhoff Abraham M y United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.
Buscar texto completoKipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.
Buscar texto completo1926-, Rowlinson J. S. y I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.
Buscar texto completoSily Van-der-Vaalʹsa. Moskva: "Nauka," Glav. red. fiziko-matematicheskoĭ lit-ry, 1988.
Buscar texto completoHalberstadt, Nadine y Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.
Texto completoHalberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.
Buscar texto completoNATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.
Buscar texto completoM, Smirnov B. Cluster ions and Van der Waals molecules. Philadelphia: Gordon and Breach Science Publishers, 1992.
Buscar texto completoCapítulos de libros sobre el tema "Hétérostructures Van der Waals"
Tsuchiya, Taku. "Van der Waals Force". En Encyclopedia of Earth Sciences Series, 1–2. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_329-1.
Texto completoTsuchiya, Taku. "Van der Waals Force". En Encyclopedia of Earth Sciences Series, 1473–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_329.
Texto completoBruylants, Gilles. "Van Der Waals Forces". En Encyclopedia of Astrobiology, 1728–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1647.
Texto completoZhang, Xiang-Jun. "Van der Waals Forces". En Encyclopedia of Tribology, 3945–47. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_457.
Texto completoArndt, T. "Van-der-Waals-Kräfte". En Springer Reference Medizin, 2429–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-48986-4_3207.
Texto completoGooch, Jan W. "Van der Waals Forces". En Encyclopedic Dictionary of Polymers, 788. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12442.
Texto completoBruylants, Gilles. "Van der Waals Forces". En Encyclopedia of Astrobiology, 2583–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1647.
Texto completoTadros, Tharwat. "Van der Waals Attraction". En Encyclopedia of Colloid and Interface Science, 1395–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-20665-8_159.
Texto completoArndt, T. "Van-der-Waals-Kräfte". En Lexikon der Medizinischen Laboratoriumsdiagnostik, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49054-9_3207-1.
Texto completoThompson, M. L. "Van Der Waals Complexes". En Inorganic Reactions and Methods, 196. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145227.ch142.
Texto completoActas de conferencias sobre el tema "Hétérostructures Van der Waals"
CAPOZZIELLO, S., V. F. CARDONE, S. CARLONI y A. TROISI. "VAN DER WAALS QUINTESSENCE". En Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702999_0038.
Texto completoNeundorf, Dörte. "Van-der-Waals-interaction constant". En The 13th international conference on spectral line shapes. AIP, 1997. http://dx.doi.org/10.1063/1.51852.
Texto completoDavoyan, Artur R. "All-van der Waals metadevices". En Active Photonic Platforms (APP) 2023, editado por Ganapathi S. Subramania y Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2678158.
Texto completoLiu, Chang-Hua. "van der Waals materials integrated nanophotonics". En Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVIII, editado por Takuo Tanaka y Din Ping Tsai. SPIE, 2020. http://dx.doi.org/10.1117/12.2567598.
Texto completoShtabovenko, Vladyslav. "Van der Waals forces in pNRQED". En XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938701.
Texto completoMajumdar, Arka. "Van der Waals material integrated nanophotonics". En 2D Photonic Materials and Devices IV, editado por Arka Majumdar, Carlos M. Torres y Hui Deng. SPIE, 2021. http://dx.doi.org/10.1117/12.2581864.
Texto completoDavoyan, Artur. "Nanophotonics with Van der Waals metastructures". En Active Photonic Platforms (APP) 2022, editado por Ganapathi S. Subramania y Stavroula Foteinopoulou. SPIE, 2022. http://dx.doi.org/10.1117/12.2632814.
Texto completoHeinz, Tony F. "Optical Properties of van der Waals Heterostructures". En Laser Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ls.2015.lw4h.1.
Texto completoRoy, T., M. Tosun, M. Amani, D. H. Lien, D. Kiriya, P. Zhao, S. Desai, A. Sachid, S. R. Madhvapathy y A. Javey. "Van der Waals heterostructures for tunnel transistors". En 2015 Fourth Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE, 2015. http://dx.doi.org/10.1109/e3s.2015.7336791.
Texto completoAstapenko, V. A., A. V. Demura, G. V. Demchenko, B. V. Potapkin, A. V. Scherbinin, S. Ya Umanskii, A. V. Zaitsevskii, John Lewis y Adriana Predoi-Cross. "Estimation of Van der Waals Broadening Coefficients". En 20TH INTERNATIONAL CONFERENCE ON SPECTRAL LINE SHAPES. AIP, 2010. http://dx.doi.org/10.1063/1.3517579.
Texto completoInformes sobre el tema "Hétérostructures Van der Waals"
Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), octubre de 1990. http://dx.doi.org/10.2172/6608231.
Texto completoMak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), mayo de 2021. http://dx.doi.org/10.2172/1782672.
Texto completoKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2015. http://dx.doi.org/10.21236/ada616377.
Texto completoSandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), junio de 1990. http://dx.doi.org/10.2172/6382645.
Texto completoSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), septiembre de 1989. http://dx.doi.org/10.2172/5610422.
Texto completoO'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), agosto de 2019. http://dx.doi.org/10.2172/1562380.
Texto completoMenezes, W. J. C. y M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), marzo de 1994. http://dx.doi.org/10.2172/10132910.
Texto completoMartinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), mayo de 2024. http://dx.doi.org/10.2172/2350595.
Texto completoGwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), noviembre de 1989. http://dx.doi.org/10.2172/7188608.
Texto completoFrench, Roger H., Nicole F. Steinmetz y Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), marzo de 2018. http://dx.doi.org/10.2172/1431216.
Texto completo