Artículos de revistas sobre el tema "Heat-engines"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Heat-engines.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Heat-engines".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Johnson, Clifford V. "Holographic heat engines as quantum heat engines". Classical and Quantum Gravity 37, n.º 3 (13 de enero de 2020): 034001. http://dx.doi.org/10.1088/1361-6382/ab5ba9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kuboyama, Tatsuya, Hidenori Kosaka, Tetsuya Aizawa y Yukio Matsui. "A Study on Heat Loss in DI Diesel Engines(Diesel Engines, Performance and Emissions, Heat Recovery)". Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2004.6 (2004): 111–18. http://dx.doi.org/10.1299/jmsesdm.2004.6.111.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Gemmen, R., M. C. Williams y G. Richards. "Electrochemical Heat Engines". ECS Transactions 65, n.º 1 (2 de febrero de 2015): 243–52. http://dx.doi.org/10.1149/06501.0243ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Willoughby, H. E. "Hurricane heat engines". Nature 401, n.º 6754 (octubre de 1999): 649–50. http://dx.doi.org/10.1038/44287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Johnson, Clifford V. "Holographic heat engines". Classical and Quantum Gravity 31, n.º 20 (1 de octubre de 2014): 205002. http://dx.doi.org/10.1088/0264-9381/31/20/205002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

KRIBUS, ABRAHAM. "Heat Transfer in Miniature Heat Engines". Heat Transfer Engineering 25, n.º 4 (junio de 2004): 1–3. http://dx.doi.org/10.1080/01457630490443505.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Courtney, W. "Cool running heat engines". Journal of Biological Physics and Chemistry 21, n.º 3 (30 de septiembre de 2021): 79–87. http://dx.doi.org/10.4024/12co20a.jbpc.21.03.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Holubec, Viktor y Artem Ryabov. "Fluctuations in heat engines". Journal of Physics A: Mathematical and Theoretical 55, n.º 1 (15 de diciembre de 2021): 013001. http://dx.doi.org/10.1088/1751-8121/ac3aac.

Texto completo
Resumen
Abstract At the dawn of thermodynamics, Carnot’s constraint on efficiency of heat engines stimulated the formulation of one of the most universal physical principles, the second law of thermodynamics. In recent years, the field of heat engines acquired a new twist due to enormous efforts to develop and describe microscopic machines based on systems as small as single atoms. At microscales, fluctuations are an inherent part of dynamics and thermodynamic variables such as work and heat fluctuate. Novel probabilistic formulations of the second law imply general symmetries and limitations for the fluctuating output power and efficiency of the small heat engines. Will their complete understanding ignite a similar revolution as the discovery of the second law? Here, we review the known general results concerning fluctuations in the performance of small heat engines. To make the discussion more transparent, we illustrate the main abstract findings on exactly solvable models and provide a thorough theoretical introduction for newcomers to the field.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Johnson, Clifford V. "Taub–Bolt heat engines". Classical and Quantum Gravity 35, n.º 4 (12 de enero de 2018): 045001. http://dx.doi.org/10.1088/1361-6382/aaa010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ahmed, Wasif, Hong Zhe Chen, Elliott Gesteau, Ruth Gregory y Andrew Scoins. "Conical holographic heat engines". Classical and Quantum Gravity 36, n.º 21 (14 de octubre de 2019): 214001. http://dx.doi.org/10.1088/1361-6382/ab470b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Poletayev, Andrey D., Ian S. McKay, William C. Chueh y Arun Majumdar. "Continuous electrochemical heat engines". Energy & Environmental Science 11, n.º 10 (2018): 2964–71. http://dx.doi.org/10.1039/c8ee01137k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Solomon, Dan. "Thermomagnetic mechanical heat engines". Journal of Applied Physics 65, n.º 9 (mayo de 1989): 3687–93. http://dx.doi.org/10.1063/1.342595.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Valdès, L. C. "Competitive solar heat engines". Renewable Energy 29, n.º 11 (septiembre de 2004): 1825–42. http://dx.doi.org/10.1016/j.renene.2004.02.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Hilt, Matthew G., K. A. Pestka, G. D. Mahan, J. D. Maynard, D. Pickrell, B. Na y J. Tamburini. "Unconventional thermoacoustic heat engines". Journal of the Acoustical Society of America 119, n.º 5 (mayo de 2006): 3414. http://dx.doi.org/10.1121/1.4786811.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Aneja, Preety. "Optimization and Efficiency Studies of Heat Engines: A Review". Journal of Advanced Research in Mechanical Engineering and Technology 07, n.º 03 (7 de octubre de 2020): 37–58. http://dx.doi.org/10.24321/2454.8650.202006.

Texto completo
Resumen
This review aims to study the various theoretical and numerical investigations in the optimization of heat engines. The main focus is to discuss the procedures to derive the efficiency of heat engines under different operating regimes (or optimization criteria) for different models of heat engines such as endreversible models, stochastic models, low-dissipation models, quantum models etc. Both maximum power and maximum efficiency operational regimes are desirable but not economical, so to meet the thermo-ecological considerations, some other compromise-based criteria have been proposed such as Ω criterion (ecological criterion) and efficient power criterion. Thus, heat engines can be optimized to work at an efficiency which may not be the maximum (Carnot) efficiency. The optimization efficiency obtained under each criterion shows a striking universal behaviour in the near-equilibrium regime. We also discussed a multi-parameter combined objective function of heat engines. The optimization efficiency derived from the multi-parameter combined objective function includes a variety of optimization efficiencies, such as the efficiency at the maximum power, efficiency at the maximum efficiency-power state, efficiency at the maximum criterion, and Carnot efficiency. Thus, a comparison of optimization of heat engines under different criteria enables to choose the suitable one for the best performance of heat engine under different conditions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Huleihil, Mahmoud y Gedalya Mazor. "Golden Section Heat Engines and Heat Pumps". International Journal of Arts 2, n.º 2 (31 de agosto de 2012): 1–7. http://dx.doi.org/10.5923/j.arts.20120202.01.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Ke, Zhenying, Yang Xu y Zihao Guo. "Analysis of the social impact of heat engine and its future application". IOP Conference Series: Earth and Environmental Science 1011, n.º 1 (1 de abril de 2022): 012007. http://dx.doi.org/10.1088/1755-1315/1011/1/012007.

Texto completo
Resumen
Abstract This paper aims to evaluate the social impact of the heat engine and analyze the application of heat engines in the future. This paper starts with some background information on heat engines and the challenges of gas pollution and gas shortage. The concepts of efficiency and environmental friendliness of the heat engine are widely discussed, which speeds up the development of several kinds of heat engines. We discuss the application of heat engines in different industries from three main aspects: agriculture, marine engine, and aviation. They improve our daily life and provide the required energy to the community. Thermoacoustic Heat Engine (TAHE), Liquid Air Cycle Engines (LACE), and a new class of Heat engine without the expulsion of reaction mass are introduced in this paper. Furthermore, the article will cover some futures. One is artificial intelligence, and another one is about biofuel, which helps heat engines to have higher efficiency and less pollution, and also how heat engines are involved in the next decade.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Derényi, Imre y R. Astumian. "Efficiency of Brownian heat engines". Physical Review E 59, n.º 6 (junio de 1999): R6219—R6222. http://dx.doi.org/10.1103/physreve.59.r6219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sinitsyn, N. A. "Fluctuation relation for heat engines". Journal of Physics A: Mathematical and Theoretical 44, n.º 40 (14 de septiembre de 2011): 405001. http://dx.doi.org/10.1088/1751-8113/44/40/405001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Anderson, Warren G. "Relativistic heat engines and efficiency". Physics Letters A 223, n.º 1-2 (noviembre de 1996): 23–27. http://dx.doi.org/10.1016/s0375-9601(96)00715-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Grazzini, Giuseppe. "Work from irreversible heat engines". Energy 16, n.º 4 (abril de 1991): 747–55. http://dx.doi.org/10.1016/0360-5442(91)90024-g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Richards, George, Randall S. Gemmen y Mark C. Williams. "Solid – state electrochemical heat engines". International Journal of Hydrogen Energy 40, n.º 9 (marzo de 2015): 3719–25. http://dx.doi.org/10.1016/j.ijhydene.2015.01.043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Löffler, Michael. "Batch Processes in Heat Engines". Energy 125 (abril de 2017): 788–94. http://dx.doi.org/10.1016/j.energy.2017.02.105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Martínez, Ignacio A., Édgar Roldán, Luis Dinis y Raúl A. Rica. "Colloidal heat engines: a review". Soft Matter 13, n.º 1 (2017): 22–36. http://dx.doi.org/10.1039/c6sm00923a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hsu, S. M., J. M. Perez y C. S. Ku. "Advanced lubricants for heat engines". Journal of Synthetic Lubrication 14, n.º 2 (julio de 1997): 143–56. http://dx.doi.org/10.1002/jsl.3000140204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nuwayhid, R. Y. y F. Moukalled. "Effect of heat leak on cascaded heat engines". Energy Conversion and Management 43, n.º 15 (octubre de 2002): 2067–83. http://dx.doi.org/10.1016/s0196-8904(01)00146-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Lampinen, Markku J. y Jari Vuorisalo. "Heat accumulation function and optimization of heat engines". Journal of Applied Physics 69, n.º 2 (15 de enero de 1991): 597–605. http://dx.doi.org/10.1063/1.347392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Vetchanin, Evgeniy y Valentin Tenenev. "Simulation of gas dynamics in heat engines of complex shapes". Modern science: researches, ideas, results, technologies 8, n.º 2 (15 de junio de 2017): 29–34. http://dx.doi.org/10.23877/ms.ts.39.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Velidi, Gurunadh y Chun Sang Yoo. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges". Energies 16, n.º 9 (8 de mayo de 2023): 3968. http://dx.doi.org/10.3390/en16093968.

Texto completo
Resumen
Unmanned aerial vehicles (UAV)s have unique requirements that demand engines with high power-to-weight ratios, fuel efficiency, and reliability. As such, combustion engines used in UAVs are specialized to meet these requirements. There are several types of combustion engines used in UAVs, including reciprocating engines, turbine engines, and Wankel engines. Recent advancements in engine design, such as the use of ceramic materials and microscale combustion, have the potential to enhance engine performance and durability. This article explores the potential use of combustion-based engines, particularly microjet engines, as an alternative to electrically powered unmanned aerial vehicle (UAV) systems. It provides a review of recent developments in UAV engines and micro combustors, as well as studies on flame stabilization techniques aimed at enhancing engine performance. Heat recirculation methods have been proposed to minimize heat loss to the combustor walls. It has been demonstrated that employing both bluff-body stabilization and heat recirculation methods in narrow channels can significantly improve combustion efficiency. The combination of flame stabilization and heat recirculation methods has been observed to significantly improve the performance of micro and mesoscale combustors. As a result, these technologies hold great promise for enhancing the performance of UAV engines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

JONES, JOHN DEWEY. "Heat Transfer Processes in Low-Heat-Rejection Diesel Engines". Heat Transfer Engineering 8, n.º 3 (enero de 1987): 90–99. http://dx.doi.org/10.1080/01457638708962807.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Odes, Ron y Abraham Kribus. "Performance of heat engines with non-zero heat capacity". Energy Conversion and Management 65 (enero de 2013): 108–19. http://dx.doi.org/10.1016/j.enconman.2012.08.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Moukalled, F., R. Y. Nuwayhid y N. Noueihed. "The efficiency of endoreversible heat engines with heat leak". International Journal of Energy Research 19, n.º 5 (julio de 1995): 377–89. http://dx.doi.org/10.1002/er.4440190503.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Matos, Wagner Santos, Juliano de Assis Pereira, Josef Klammer, José Antonio Perrella Balestieri, Alex Mendonça Bimbato y Marcelino Pereira do Nascimento. "HEAT REJECTION AVOIDANCE IN COMBUSTION ENGINES". Brazilian Journal of Development 6, n.º 7 (2020): 53369–92. http://dx.doi.org/10.34117/bjdv6n7-835.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Myers, Nathan M., Jacob McCready y Sebastian Deffner. "Quantum Heat Engines with Singular Interactions". Symmetry 13, n.º 6 (31 de mayo de 2021): 978. http://dx.doi.org/10.3390/sym13060978.

Texto completo
Resumen
By harnessing quantum phenomena, quantum devices have the potential to outperform their classical counterparts. Here, we examine using wave function symmetry as a resource to enhance the performance of a quantum Otto engine. Previous work has shown that a bosonic working medium can yield better performance than a fermionic medium. We expand upon this work by incorporating a singular interaction that allows the effective symmetry to be tuned between the bosonic and fermionic limits. In this framework, the particles can be treated as anyons subject to Haldane’s generalized exclusion statistics. Solving the dynamics analytically using the framework of “statistical anyons”, we explore the interplay between interparticle interactions and wave function symmetry on engine performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Yerra, Pavan Kumar y Chandrasekhar Bhamidipati. "Critical heat engines in massive gravity". Classical and Quantum Gravity 37, n.º 20 (26 de septiembre de 2020): 205020. http://dx.doi.org/10.1088/1361-6382/abb2d1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Atchley, Anthony. "Sound waves rev up heat engines". Physics World 12, n.º 8 (agosto de 1999): 21–22. http://dx.doi.org/10.1088/2058-7058/12/8/27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Larsen, D. C., J. W. Adams, L. R. Johnson, A. P. S. Teotia, L. G. Hill y T. Z. Kattamis. "Ceramic Materials for Advanced Heat Engines". Journal of Engineering Materials and Technology 109, n.º 1 (1 de enero de 1987): 99. http://dx.doi.org/10.1115/1.3225945.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Páv, Karel, Václav Rychtář y Václav Vorel. "Heat balance in modern automotive engines". Journal of Middle European Construction and Design of Cars 10, n.º 2 (1 de noviembre de 2012): 6–13. http://dx.doi.org/10.2478/v10138-012-0007-7.

Texto completo
Resumen
Shrnutí Tento příspěvek obsahuje informace o přerozdělení tepla v současných vozidlových spalovacích motorech. Vycházelo se z různých konstrukcí především zážehových motorů s rozdílnými zdvihovými objemy, vznětové motory jsou však také zmíněny. Je zde uveden postup výpočtu tepelné bilance motoru, stejně tak, jako obtíže spojené se získáním vstupních dat měřením. Byl navržen a ověřen empirický vztah pro výpočet tepelného toku do chladící kapaliny, který umožňuje snadné nalezení nekorektně změřených pracovních bodů motoru už v počáteční fázi automatického měřícího cyklu. Naměřené hodnoty byly srovnány s výpočtem pomocí programu GT-Power. Na závěr je uvedeno srovnání různých typů motorů s ohledem na velikost tepelného toku do chladící kapaliny
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Pilgram, Sebastian, David Sánchez y Rosa López. "Quantum point contacts as heat engines". Physica E: Low-dimensional Systems and Nanostructures 74 (noviembre de 2015): 447–50. http://dx.doi.org/10.1016/j.physe.2015.08.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Chakraborty, Avik y Clifford V. Johnson. "Benchmarking black hole heat engines, II". International Journal of Modern Physics D 27, n.º 16 (diciembre de 2018): 1950006. http://dx.doi.org/10.1142/s0218271819500068.

Texto completo
Resumen
We extend to nonstatic black holes our benchmarking scheme that allows for cross–comparison of the efficiencies of asymptotically AdS black holes used as working substances in heat engines. We use a circular cycle in the [Formula: see text] plane as the benchmark cycle. We study Kerr black holes in four spacetime dimensions as an example. As in the static case, we find an exact formula for the benchmark efficiency in an ideal gas-like limit, which may serve as an upper bound for rotating black hole heat engines in a thermodynamic ensemble with fixed angular velocity. We use the benchmarking scheme to compare Kerr to static black holes charged under Maxwell and Born–Infeld sectors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Chakraborty, Avik y Clifford V. Johnson. "Benchmarking black hole heat engines, I". International Journal of Modern Physics D 27, n.º 16 (diciembre de 2018): 1950012. http://dx.doi.org/10.1142/s0218271819500123.

Texto completo
Resumen
We present the results of initiating a benchmarking scheme that allows for cross-comparison of the efficiencies of black holes used as working substances in heat engines. We use a circular cycle in the [Formula: see text] plane as the benchmark engine. We test it on Einstein–Maxwell, Gauss–Bonnet and Born–Infeld black holes. Also, we derive a new and surprising exact result for the efficiency of a special “ideal gas” system to which all the black holes asymptote.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Arcoumanis, C., P. Cutter y D. S. Whitelaw. "Heat Transfer Processes in Diesel Engines". Chemical Engineering Research and Design 76, n.º 2 (febrero de 1998): 124–32. http://dx.doi.org/10.1205/026387698524695.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Wei, Shao-Wen y Yu-Xiao Liu. "Charged AdS black hole heat engines". Nuclear Physics B 946 (septiembre de 2019): 114700. http://dx.doi.org/10.1016/j.nuclphysb.2019.114700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Long, Rui y Wei Liu. "Ecological optimization for general heat engines". Physica A: Statistical Mechanics and its Applications 434 (septiembre de 2015): 232–39. http://dx.doi.org/10.1016/j.physa.2015.04.016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Senft, J. R. "Mechanical efficiency of kinematic heat engines". Journal of the Franklin Institute 324, n.º 2 (enero de 1987): 273–90. http://dx.doi.org/10.1016/0016-0032(87)90066-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Senft, J. R. "Pressurization effects in kinematic heat engines". Journal of the Franklin Institute 328, n.º 2-3 (enero de 1991): 255–79. http://dx.doi.org/10.1016/0016-0032(91)90034-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Chen, Lingen, Fengrui Sun y Chih Wu. "Thermo-economics for endoreversible heat-engines". Applied Energy 81, n.º 4 (agosto de 2005): 388–96. http://dx.doi.org/10.1016/j.apenergy.2004.09.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Gordon, J. M. "On optimized solar-driven heat engines". Solar Energy 40, n.º 5 (1988): 457–61. http://dx.doi.org/10.1016/0038-092x(88)90100-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Boehm, R. F. "Maximum performance of solar heat engines". Applied Energy 23, n.º 4 (enero de 1986): 281–96. http://dx.doi.org/10.1016/0306-2619(86)90012-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Flint, R. F. "Ceramic materials for advanced heat engines". Materials & Design 7, n.º 4 (julio de 1986): 215. http://dx.doi.org/10.1016/0261-3069(86)90139-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía