Artículos de revistas sobre el tema "Heat engineering"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Heat engineering.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Heat engineering".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Kolomeitsev, V. V. y E. F. Kolomeitseva. "Heat Engineering". Refractories and Industrial Ceramics 40, n.º 1-2 (enero de 1999): 64–69. http://dx.doi.org/10.1007/bf02762450.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Dobáková, Romana, Natália Jasminská, Tomáš Brestovič, Mária Čarnogurská y Marián Lázár. "Dimensional analysis application when calculating heat losses". International Journal of Engineering Research and Science 3, n.º 9 (30 de septiembre de 2017): 29–34. http://dx.doi.org/10.25125/engineering-journal-ijoer-sep-2017-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Akhmetov, Dr Sairanbek y Dr Anarbay Kudaykulov. "On the Method of Construction of the Dependence of the Heat Extension Coefficient on Temperature in Heat-resistant Alloys". International Journal of Engineering Research and Science 3, n.º 8 (31 de agosto de 2017): 20–29. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Garimella, Srinivas y Matthew Hughes. "Engineering for Heat Waves". American Scientist 111, n.º 6 (2023): 328. http://dx.doi.org/10.1511/2023.111.6.328.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Vereshchagina, T., N. Loginov y A. Sorokin. "HEAT PIPES IN NUCLEAR ENGINEERING". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, n.º 4 (26 de diciembre de 2021): 213–33. http://dx.doi.org/10.55176/2414-1038-2021-4-213-233.

Texto completo
Resumen
The paper provides an overview of technical solutions for using of heat pipes in nuclear power plants both developed and operating. The review based on the scientific, technical and patent literature shows wide application heat pipes as heat transfer devices. Using of them for small and super-small power plants seems to be especially effective, because of high specific cost of plants with circulating coolants. A heat pipe is a device transferrind the heat by means of evaporation and condensation of a coolant circulating automatically under the action of capillar or gravitation forces. Heat pipes are used rather widely, both abroad and in Russia. The first application of a heat pipe principle in nuclear power plants was published in 1957, even before the emergence of the term "heat pipe". Now, there are about 300 patents in the world related to heat pipes application in nuclear power plants. Theare are seweral thouthands articles on the development of nuclear reactors with heat pipes have been published in the scientific and technical literature. One should expect that fifth-generation nuclear reactors cooled by heat pipes without any mechanisms and machines for the circulation of the coolant, as well as without the consumption of mechanical and electrical energy, will be appeared in this decade.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kotake, Susumu. "Molecular Engineering in Heat Transfer". International Journal of Fluid Mechanics Research 25, n.º 4-6 (1998): 468–81. http://dx.doi.org/10.1615/interjfluidmechres.v25.i4-6.20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ball, Philip. "Computer engineering: Feeling the heat". Nature 492, n.º 7428 (diciembre de 2012): 174–76. http://dx.doi.org/10.1038/492174a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bansal, Pradeep. "Advances in Heat Transfer Engineering". Heat Transfer Engineering 31, n.º 12 (octubre de 2010): 963–64. http://dx.doi.org/10.1080/01457631003638903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Glaeser, W. A. "Surface engineering and heat treatment". Tribology International 30, n.º 3 (marzo de 1997): 245–46. http://dx.doi.org/10.1016/s0301-679x(96)00035-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Proskuryakov, A. G., E. N. Videneev, V. N. Proselkov, V. P. Spasskov y K. V. Simonov. "Estimating VVÉR heat engineering reliability". Soviet Atomic Energy 68, n.º 3 (marzo de 1990): 187–91. http://dx.doi.org/10.1007/bf02074083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Cremers, C. J. "Engineering flow and heat exchange". International Journal of Heat and Fluid Flow 6, n.º 3 (septiembre de 1985): 159. http://dx.doi.org/10.1016/0142-727x(85)90003-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Oellrich, L. R. "Heat transfer in LNG Engineering". Chemical Engineering and Processing: Process Intensification 31, n.º 3 (julio de 1992): 205. http://dx.doi.org/10.1016/0255-2701(92)80017-w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Gortyshov, Yu F. y P. G. Danilaev. "Inverse Problems of Heat Engineering". Russian Aeronautics 66, S1 (diciembre de 2023): S57—S100. http://dx.doi.org/10.3103/s1068799823050021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

E.V., Shipacheva, Pirmatov R. Kh. y Turdalieva M.K. "Heat Engineering Heterogeneity Of The Outer Walls Of Earthquake-Resistant Buildings". American Journal of Interdisciplinary Innovations and Research 02, n.º 12 (7 de diciembre de 2020): 1–8. http://dx.doi.org/10.37547/tajiir/volume02issue12-01.

Texto completo
Resumen
When assessing the level of energy efficiency of civilian buildings, a special place is given to establishing the level of thermal protection of their external enclosing structures. Significant discrepancies in the results of theoretical and experimental studies of heat fluxes through the outer walls of buildings erected in seismic areas are associated with the design features of fences - the presence of reinforced concrete elements in them: anti-seismic belts at the level of floors, cores at intersections of walls and along the edges of large window openings ... In addition, in recent years, external walls have become widespread, which are filling of bricks or aerated concrete blocks between the main structural elements of the frame - monolithic reinforced concrete columns and crossbars. The introduction of reinforced concrete elements into the structure of the external wall fencing provides strength, rigidity and stability of buildings, guarantees its seismic resistance. At the same time, reinforced concrete inclusions are significant “cold bridges” in warmer brick or aerated concrete masonry. Such heat engineering heterogeneity of earthquake-resistant outer walls significantly complicates the process of determining their heat-shielding properties. This, in turn, leads to errors in the design of heating systems, which inevitably affects the thermal comfort of the premises, the formation of condensation and mold zones in the cold zones of the inner surface of the fences. The article presents the results of theoretical and experimental studies to determine the heat-shielding properties of external heat-engineering heterogeneous walls of earthquake-resistant buildings. The most reliable method for calculating the reduced resistance to heat transfer of an inhomogeneous external structure and the coefficient of its thermal inhomogeneity have been established.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Rajski, Krzysztof y Jan Danielewicz. "Heat Transfer and Heat Recovery Systems". Energies 16, n.º 7 (5 de abril de 2023): 3258. http://dx.doi.org/10.3390/en16073258.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Yu, Kitae, Junhyo Kim, Jungpil Noh, Sunchul Huh, Byeongkeun Choi, Hanshik Chung y Hyomin Jeong. "Analysis of laminar nanofluid forced convection heat transport through the CFD". International Journal of Engineering Research and Science 3, n.º 8 (31 de agosto de 2017): 69–75. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Wenqiang, Cui. "Up-Tube Heat Exchanger Engineering Design and Heat Transfer Analysis". Journal of Industry and Engineering Management 1, n.º 1 (marzo de 2023): 88–91. http://dx.doi.org/10.62517/jiem.202303113.

Texto completo
Resumen
In the coking process, a large amount of 750℃-800℃ coke-oven gas is produced, and the traditional process is to use circulating water spray to cool the coke-oven gas instantly to 80-90℃, and the sensible heat of the coke-oven gas is wasted. In order to recover sensible heat of coke-oven gas reliably and stably, this paper puts forward a kind of uptube heat exchanger for sensible heat recovery of coke-oven gas based on the problems existing in the past heat exchanger and the characteristics of coke-oven gas itself, and analyzes the heat transfer process equation of heat exchanger.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

ZUNAID, Mohammad. "NUMERICAL STUDY OF PRESSURE DROP AND HEAT TRANSFER IN A STRAIGHT RECTANGULAR AND SEMI CYLINDRICAL PROJECTIONS MICROCHANNEL HEAT SINK". Journal of Thermal Engineering 3, n.º 5 (19 de septiembre de 2017): 1453–65. http://dx.doi.org/10.18186/journal-of-thermal-engineering.338903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Ibsen, Claus H. y David Toal. "InDEStruct: engineering advanced heat transfer systems". Open Access Government 36, n.º 1 (12 de octubre de 2022): 234–37. http://dx.doi.org/10.56367/oag-036-10199.

Texto completo
Resumen
InDEStruct: engineering advanced heat transfer systems Within the University of Southampton, Atul Singh – also referred to as ESR1 – works on his PhD within a Horizon 2020 Programme project InDEStruct. His scope within this project is to work on optimisation and design methods to improve decision-making in heat exchanger conceptual design, in other words, a more effective design taking into account multidisciplinary aspects of such designs and reducing the experimental cost required to make decisions on new heat exchanger topologies. Open Access Government interviews members of the team of the InDEStruct project, a Horizon 2020 project which works toward inter-disciplinary design approaches for advanced heat transfer systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

ISSHIKI, Naotsugu. "Mixed Phase Flow in Heat Engineering". JAPANESE JOURNAL OF MULTIPHASE FLOW 1, n.º 2 (1987): 125–37. http://dx.doi.org/10.3811/jjmf.1.125.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Bakhtar, F. "Engineering Thermodynamics, Work and Heat Transfer". Chemical Engineering Science 48, n.º 8 (1993): 1541. http://dx.doi.org/10.1016/0009-2509(93)80061-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

GREGORY, TOM. "HEAT-QUILIBRIUM". New Electronics 55, n.º 2 (febrero de 2022): 26–27. http://dx.doi.org/10.12968/s0047-9624(22)60083-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Chen, Z. P., C. L. Yu, J. Y. Zheng y G. H. Zhu. "Heat-transfer analysis of flat steel ribbon-wound cryogenic high-pressure vessel". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222, n.º 9 (1 de septiembre de 2008): 1745–51. http://dx.doi.org/10.1243/09544062jmes1011.

Texto completo
Resumen
In the past 40 years, more than 7000 layered vessels using flat ribbon-wound cylindrical shells have been manufactured in China. Theoretical as well as experimental investigations show that there are distinct economical and engineering advantages in using such vessels. In this paper, based on the analysis of the heat transfer process in a flat steel ribbon-wound liquid hydrogen high-pressure vessel, a heat transfer model of the walls of the shell and head has been set up. The temperature difference among the interfaces, the heat transfer through the shell and head, and the evaporation rate of the vessel under a steady heat-flow condition has been calculated. The numerical calculations show that such a structure meets the design requirements.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Mihaela Duinea, Adelaida. "About Modeling and Simulation of Heat Exchange Convective Surfaces of the Steam Generator". International Journal of Engineering Research and Science 3, n.º 9 (30 de septiembre de 2017): 01–07. http://dx.doi.org/10.25125/engineering-journal-ijoer-jul-2017-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Ionkin, I. L., P. V. Roslyakov y B. Luning. "Application of Condensing Heat Utilizers at Heat-Power Engineering Objects (Review)". Thermal Engineering 65, n.º 10 (20 de septiembre de 2018): 677–90. http://dx.doi.org/10.1134/s0040601518100038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Tyutin, N. A. "Heat balance equations for a reactor in a heat engineering plant". Refractories and Industrial Ceramics 50, n.º 1 (enero de 2009): 60–61. http://dx.doi.org/10.1007/s11148-009-9133-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Wan, Junchi. "The Heat Transfer Coefficient Predictions in Engineering Applications". Journal of Physics: Conference Series 2108, n.º 1 (1 de noviembre de 2021): 012022. http://dx.doi.org/10.1088/1742-6596/2108/1/012022.

Texto completo
Resumen
Abstract Most engineering applications have boundary layers; the convective transport of mass, momentum and heat normally occurs through a thin boundary layer close to the wall. It is essential to predict the boundary layer heat transfer phenomenon on the surface of various engineering machines through calculations. The experimental, analogy and numerical methods are the three main methods used to obtain convective heat transfer coefficient. The Reynolds analogy provides a useful method to estimate the heat transfer rate with known surface friction. In the Reynolds analogy, the heat transfer coefficient is independent of the temperature ratio between the wall and the fluid. Other methods also ignore the effect of the temperature ratio. This paper summarizes the methods of predicting heat transfer coefficients in engineering applications. The effects of the temperature ratio between the wall and the fluid on the heat transfer coefficient predictions are studied by summarizing the researches. Through the summary, it can be found that the heat transfer coefficients do show a dependence on the temperature ratio. And these effects are more obvious in turbulent flow and pointing out that the inaccuracy in the determination of the heat transfer coefficient and proposing that the conjugate heat transfer analysis is the future direction of development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Jasminská, Natália, Tomáš Brestovič, Ľubica Bednárová, Marián Lázár y Romana Dobáková. "Design of a Hydrogen Compressor Powered by Accumulated Heat and Generated in Metal Hydrides". International Journal of Engineering Research and Science 3, n.º 9 (30 de septiembre de 2017): 35–38. http://dx.doi.org/10.25125/engineering-journal-ijoer-sep-2017-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Shi, Pei Jing, Hong Mei Wang, Wei Zhang y Bin Shi Xu. "Advanced Rapid Forming Technology for Remanufacturing Engineering". Applied Mechanics and Materials 271-272 (diciembre de 2012): 386–89. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.386.

Texto completo
Resumen
Based on the foreign remanufacturing mode, the new remanufacturing rapid forming technology, which relies mainly on Surface Repair and Performance Improving Method has been explored and practiced. The aim of remanufacturing forming is to renew the original size of the waste components rapidly, and then improve their service performance. The advanced rapid forming technology, especially the high density heat source surface forming technology, is the important technique to carry out rapid forming. Based on the arc heat source, plasma heat source and laser heat source, three kinds of high density heat source remanufacturing forming technologies, such as high speed arc spraying forming technology, micro-arc plasma forming technology, and laser cladding forming technology, have been developed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

TAKENAKA, Satsuki, Kiyoshi TOKIEDA, Seiichiro YAMAZAKI y Hideaki KIMURA. "ICONE15-10597 ENGINEERING STUDY ON DECOMMISSIONING OF HEAT EXCHANGERS IN TOKAI POWER STATION". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_323.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Wang, Li Jun, Xiao Ping Miao, Rui Hai Wang y Bo Wang. "Numerical Simulation on Heat Transfer from Envelope of the Underground Engineering". Advanced Materials Research 320 (agosto de 2011): 657–62. http://dx.doi.org/10.4028/www.scientific.net/amr.320.657.

Texto completo
Resumen
Whether the results of the dynamic heat flux from the underground engineering envelope are accurate, may influence the accuracy of calculating the transient heat load and could affect the initial cost and actual operation of the air conditioning system in the underground engineering. Based on the mathematical modeling of heat transfer in the underground engineering envelope, the influence of the model dimension, boundary condition on the soil surface, initial temperature of the soil, the adiabatic distances far from the envelope and the heat transfer coefficient between the envelope surface and the indoor air, the heat transfer mechanism of the underground engineering envelope was studied in terms of the building structure, style of the envelopes and the difference of the locations. For providing the analysis basis to simplified calculation of heat transfer in the underground engineering envelope.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Han, Ruiping, Kiros Hagos, Xiaoyan Ji, Shaopeng Zhang, Jingjing Chen, Zhuhong Yang, Xiaohua Lu y Changsong Wang. "Review on heat-utilization processes and heat-exchange equipment in biogas engineering". Journal of Renewable and Sustainable Energy 8, n.º 3 (mayo de 2016): 032701. http://dx.doi.org/10.1063/1.4949497.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Park, Cheol, Junhyo Kim, Jungpil Noh, Sunchul Huh, Byeongkeun Choi, hanshik Chung y HyoMin Jeong. "Numerical Analysis of Heat Transfer in Unsteady Nanofluids in a Small Pipe with Pulse Pressure". International Journal of Engineering Research and Science 3, n.º 8 (31 de agosto de 2017): 63–68. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Trabelsi, R., A. C. Seibi, F. Boukadi, W. Chalgham y H. Trabelsi. "Temperature Distribution and Numerical Modeling of Heat Transfer in Block 276 P1-Sand – Part I". International Journal of Engineering Research and Science 3, n.º 7 (31 de julio de 2017): 30–40. http://dx.doi.org/10.25125/engineering-journal-ijoer-jul-2017-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Manikanta, R. V., D. V. N. Prabhakar y N. V. S. Shankar. "Effect of Twisted Tape Insert On Heat Transfer During Flow Through A Pipe Using CFD". International Journal of Engineering Research and Science 3, n.º 5 (31 de mayo de 2017): 58–63. http://dx.doi.org/10.25125/engineering-journal-ijoer-may-2017-20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Ochkov, V. F., K. A. Orlov, E. V. Dorokhov y V. M. Lavygin. "Heat engineering: computer calculations with measurement units". Vestnik IGEU, n.º 1 (2016): 10–18. http://dx.doi.org/10.17588/2072-2672.2016.1.010-018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Bansal, Pradeep y Lorenzo Cremaschi. "Advances in refrigeration and heat transfer engineering". Science and Technology for the Built Environment 21, n.º 5 (13 de mayo de 2015): 481–82. http://dx.doi.org/10.1080/23744731.2015.1048623.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Davidge, R. W. "Perspectives for engineering ceramics in heat engines". High Temperature Technology 5, n.º 1 (febrero de 1987): 13–21. http://dx.doi.org/10.1080/02619180.1987.11753336.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Kursky, A. S., V. V. Kalygin y I. I. Semidotsky. "Low-power nuclear engineering for heat production". Thermal Engineering 59, n.º 5 (15 de abril de 2012): 345–51. http://dx.doi.org/10.1134/s0040601512050060.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Chen, Shipu y Tom Bell. "Innovation in Heat Treatment and Surface Engineering". International Heat Treatment and Surface Engineering 1, n.º 1 (enero de 2007): 1–2. http://dx.doi.org/10.1179/174951407x169295.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Singh, Amanjot y Anil Grover. "Genetic engineering for heat tolerance in plants". Physiology and Molecular Biology of Plants 14, n.º 1-2 (abril de 2008): 155–66. http://dx.doi.org/10.1007/s12298-008-0014-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Delaunois, Fabienne, Francine Roudet y Véronique Vitry. "Trends in heat treatment and surface engineering". Metallurgical Research & Technology 115, n.º 4 (2018): 401. http://dx.doi.org/10.1051/metal/2018060.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Ol’khovskii, G. G. "Status and Prospects of Heat-Power Engineering". Power Technology and Engineering 39, n.º 2 (marzo de 2005): 104–13. http://dx.doi.org/10.1007/s10749-005-0033-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Martynenko, G. M. "Soyuzteplostroi — 80 years in heat engineering construction". Refractories and Industrial Ceramics 49, n.º 5 (septiembre de 2008): 325–29. http://dx.doi.org/10.1007/s11148-009-9094-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Norman, Chris. "The chemical engineering guide to heat transfer". International Journal of Heat and Fluid Flow 8, n.º 2 (junio de 1987): 92. http://dx.doi.org/10.1016/0142-727x(87)90002-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Gerasimov, G. Ya, S. A. Losev y V. N. Makarov. "Avogadro program: Environmental problems of heat engineering". Journal of Engineering Physics and Thermophysics 69, n.º 6 (noviembre de 1996): 688–93. http://dx.doi.org/10.1007/bf02606101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Rudenko, A. I., V. N. Savina, A. P. Nishchik y A. E. Koloskov. "Toward calculation of heat-engineering characteristics of two-phase thermosiphons filled with ethylene glycol II. Heat-engineering characteristics". Journal of Engineering Physics and Thermophysics 71, n.º 2 (marzo de 1998): 198–201. http://dx.doi.org/10.1007/bf02681534.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Qi, Zi Shu, Qing Gao, Zhen Hai Gao, Yan Liu y Li Bai. "The Research on the Influence Law of the Fluid Temperature in Ground Heat Exchange on System Operation". Advanced Materials Research 960-961 (junio de 2014): 555–58. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.555.

Texto completo
Resumen
In the paper, by studying the underground heat exchanger heat transfer mode, the computing platform for ground source heat pump system was established. Through a engineering case, the influence character of the fluid temperature at the outlet of ground heat exchange on the length of system, the fluid temperature in ground heat exchange, and the heat pump power consumption were analyzed, which provide an approach for engineering design and operation prediction, and for the thermodynamic analysis of performance of system year by year and prospective study to guide the engineering practice.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Wang, Li Jun, Xiao Ping Miao, Rui Hai Wang, Wei Hua Li, Jun Yang, Yong Li, Feng Jiang y Xiao Feng Zhou. "The Systems Emulation Study of the Dynamic Heat Load for Underground Structure Envelope". Applied Mechanics and Materials 291-294 (febrero de 2013): 1847–50. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.1847.

Texto completo
Resumen
Whether the results of the dynamic heat flux from the underground engineering envelope are accurate, may influence the accuracy of calculating the transient heat load and could affect the initial cost and actual operation of the air-conditioning system in the underground engineering. The paper is to find out the mechanisms of the heat transfer in the underground engineering envelope. The mechanisms of heat transfer in normal underground engineering envelope, simplified calculation for heat transfer in the underground engineering envelope and the dynamic emulation of the heat load of the underground engineering envelope.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Sun, Jian y Wei Qiang Liu. "Effect of Heat Leading of Windward Leading Edge Using Heat Pipe with Porous". Advanced Materials Research 217-218 (marzo de 2011): 674–79. http://dx.doi.org/10.4028/www.scientific.net/amr.217-218.674.

Texto completo
Resumen
By the uses of finite element method and finite volume method, we calculated the solid domain and fluid domain of windward leading edge which is flying under one condition. And the paper proved that heat pipes which covered on the leading edge have effect on thermal protection. The maximum temperature of the head decreased 12.2%. And the minimum temperature of after-body increased 8.85%. Achieving the transfer of heat from head to after-body, the front head of the thermal load was weakened and the ability of leading edge thermal protection was strengthen. The effect of the thickness of heat pipe, black level of covering materials and equivalent thermal conductivity of heat pipes on the wall temperature were discussed for the selection of thermal protection materials of windward leading edge to provide a frame of reference.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía