Literatura académica sobre el tema "Heat engineering"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Heat engineering".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Heat engineering"

1

Kolomeitsev, V. V. y E. F. Kolomeitseva. "Heat Engineering". Refractories and Industrial Ceramics 40, n.º 1-2 (enero de 1999): 64–69. http://dx.doi.org/10.1007/bf02762450.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Dobáková, Romana, Natália Jasminská, Tomáš Brestovič, Mária Čarnogurská y Marián Lázár. "Dimensional analysis application when calculating heat losses". International Journal of Engineering Research and Science 3, n.º 9 (30 de septiembre de 2017): 29–34. http://dx.doi.org/10.25125/engineering-journal-ijoer-sep-2017-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Akhmetov, Dr Sairanbek y Dr Anarbay Kudaykulov. "On the Method of Construction of the Dependence of the Heat Extension Coefficient on Temperature in Heat-resistant Alloys". International Journal of Engineering Research and Science 3, n.º 8 (31 de agosto de 2017): 20–29. http://dx.doi.org/10.25125/engineering-journal-ijoer-aug-2017-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Garimella, Srinivas y Matthew Hughes. "Engineering for Heat Waves". American Scientist 111, n.º 6 (2023): 328. http://dx.doi.org/10.1511/2023.111.6.328.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Vereshchagina, T., N. Loginov y A. Sorokin. "HEAT PIPES IN NUCLEAR ENGINEERING". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, n.º 4 (26 de diciembre de 2021): 213–33. http://dx.doi.org/10.55176/2414-1038-2021-4-213-233.

Texto completo
Resumen
The paper provides an overview of technical solutions for using of heat pipes in nuclear power plants both developed and operating. The review based on the scientific, technical and patent literature shows wide application heat pipes as heat transfer devices. Using of them for small and super-small power plants seems to be especially effective, because of high specific cost of plants with circulating coolants. A heat pipe is a device transferrind the heat by means of evaporation and condensation of a coolant circulating automatically under the action of capillar or gravitation forces. Heat pipes are used rather widely, both abroad and in Russia. The first application of a heat pipe principle in nuclear power plants was published in 1957, even before the emergence of the term "heat pipe". Now, there are about 300 patents in the world related to heat pipes application in nuclear power plants. Theare are seweral thouthands articles on the development of nuclear reactors with heat pipes have been published in the scientific and technical literature. One should expect that fifth-generation nuclear reactors cooled by heat pipes without any mechanisms and machines for the circulation of the coolant, as well as without the consumption of mechanical and electrical energy, will be appeared in this decade.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kotake, Susumu. "Molecular Engineering in Heat Transfer". International Journal of Fluid Mechanics Research 25, n.º 4-6 (1998): 468–81. http://dx.doi.org/10.1615/interjfluidmechres.v25.i4-6.20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ball, Philip. "Computer engineering: Feeling the heat". Nature 492, n.º 7428 (diciembre de 2012): 174–76. http://dx.doi.org/10.1038/492174a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bansal, Pradeep. "Advances in Heat Transfer Engineering". Heat Transfer Engineering 31, n.º 12 (octubre de 2010): 963–64. http://dx.doi.org/10.1080/01457631003638903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Glaeser, W. A. "Surface engineering and heat treatment". Tribology International 30, n.º 3 (marzo de 1997): 245–46. http://dx.doi.org/10.1016/s0301-679x(96)00035-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Proskuryakov, A. G., E. N. Videneev, V. N. Proselkov, V. P. Spasskov y K. V. Simonov. "Estimating VVÉR heat engineering reliability". Soviet Atomic Energy 68, n.º 3 (marzo de 1990): 187–91. http://dx.doi.org/10.1007/bf02074083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Heat engineering"

1

Razavinia, Nasimalsadat. "Waste heat recovery with heat pipe technology". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94983.

Texto completo
Resumen
High grade energy, which is primarily derived from hydrocarbon fuels, is in short supply; therefore alternative energy sources such as renewable and recycled energy sources are gaining significant attention. Pyro-metallurgical processes are large consumers of energy. They in return generate large quantities of waste heat which goes un-recovered. The overall theme of this research is to capture, concentrate and convert some of this waste heat to a valuable form. The main objective is to characterize and develop heat pipe technology (some of which originated at McGill) to capture and concentrate low grade heat. Heat pipe employs boiling as the means to concentrate the energy contained in the waste heat and transfers it as higher quality energy. The distinct design features of this device (separate return line and flow modifiers in the evaporator) maximize its heat extraction capacity. During the testing the main limitations within the heat pipe were identified. Different test phases were designed throughout which the configuration of the system was modified to overcome these limitations and to increase the amount of extracted heat.
L'énergie d'haut grade de nos jours est produite principalement à base de combustion d'hydrocarbure et les réserves de cette énergie deviennent de plus en plus rare, mais certaines énergies alternatives connues gagnent des forces parmi les marchés incluant les sources d'énergie renouvelables et recyclées. Les usines pyrométallurgiques sont des consommateurs significatifs d'énergie d'haut grade. Ces procédés industriels relâches un montant important de chaleurs (perte) à l'environnement sans aucune récupération. Le but du projet est de concentrer, capturer et convertir cette chaleur résiduelle de basse qualité en énergie valable. Par contre, l'objectif principal du projet comme tel est de développer et de perfectionner un caloduc capable d'extraire cette chaleur parvenant des gaz effluents. Le point d'ébullition d'une substance (vapeur) est utilisé comme moyen de concentrer l'énergie contenu dans les effluents avec la technologie des caloducs. Pour maximiser les gains énergétiques, la conception de ce caloduc en particulier utilise des canaux de retour indépendant ainsi qu'un modificateur de débit dans l'évaporateur, lui permettant d'extraire un niveau supérieur de chaleur. Pendant les essais lors du projet, les éléments limitants des systèmes de caloducs ont été identifiés. Les configurations du système ont été ajustées et modifiés dans la phase expérimentale d'essai pour surmonter ces limitations et maximiser l'extraction de chaleur.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nyholm, Joakim. "Horizontal wastewater heat recovery heat exchanger, a model". Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263618.

Texto completo
Resumen
The residential and service sector amounts to approximately 40 percent of Sweden’s entire energy demand. In which 90 percent of that is used by households and non-residential buildings. All in all about 80 TWh are used for heating and the provision of hot water in households and non-residential buildings. Since heating has always been such a large part of the energy consumption for buildings in Sweden, it is only natural that there have been several improvements along the way. There’s a new facility just installed last year in the building Pennfäktaren 11, a horizontal wastewater heat recovery heat exchanger. This thesis study will be focused on creating a TRNSYS model of a waste water heat exchanger, where the crucial parameters such as water flow rate, temperature, and more can be used as inputs to assess the technical performance of the heat exchanger. The model developed in TRNSYS can simulate the performance of a single heat exchanger unit, with a few input parameters needed. The model was developed by using measurement data from the facility in Stockholm to get realistic results depending on time and actual measurements. From the measured data, there were a few parameters that needed to be calculated, first off the mass flow rate of the waste water flow, this was done by an energy balance over the heat exchanger. Following the mass flow rate the cold water set point had to be determined, so that the heat recovered was not larger than the heat that could be utilized by the building. Since data was available from a single site, there was not much else to do than accept the data as true, there were some data points that had to be sorted out however, such as negative flow rates and flow rates much higher than should be possible. The finished model uses all the data from the measurements as well as the calculated values, it provided heat transfer rate along with the outgoing temperatures of both waste water and the preheated water. The first reference scenario provided 25,3 MWh of recovered energy, but the best scenario with an increased waste water temperature as well as increased flow rate it could provide a total of 47,2 MWh, almost twice the original value. To conclude the model seems to simulate a waste water heat exchanger well and returns feasible data. It should be possible to use the model to see if a building is a good “candidate” to install a waste water heat exchanger in.
Byggnads och servicesektorn står för cirka 40 procent av Sveriges energibehov. Av de 40 procenten består 90% av energibehov ifrån hushåll och kontorsbyggnader. Totalt sett 80 TWh används för uppvärmning av byggnader samt varmvatten. Då uppvärmning alltid varit en stor del av energibehovet i Sverige är det naturligt att det skett en rad förbättringar på vägen. Det finns en ny anläggning på Pennfäktaren 11 i Stockholm, en horisontell värmeväxlare för avloppsvatten. Den här uppsatsen fokuserar på att skapa en modell i TRNSYS av en värmeväxlare där parametrar som vattenflöde, temperatur, och mer kan användas för att bedöma den tekniska aspekten av en installation av värmeväxlare i en byggnad. Modellen kan simulera prestandan av en ensam värmeväxlare, med endast ett fåtal parametrar som behövs. Modellen baseras på mätdata ifrån anläggningen på Pennfäktaren, denna mätdata har sedan använts för att beräkna först massflödet av avloppsvatten men också för att bestämma hur mycket värme som är möjligt att återvinna utan att överskrida det byggnaden faktiskt kan använda. Då det bara finns data ifrån en källa fick den anses som korrekt, dock gjordes en del ändringar där data helt enkelt var omöjligt, t.ex. negativa avloppsflöden och flödesmängder så höga att de inte ska kunna vara möjliga. Den färdiga modellen använder mätdata tillsammans med de beräknade värdena. Detta används för att genom modellen beräkna temperaturvärden för utgående vatten och avlopp samt den totala mängden återvunnen värme. I referensscenariot kunde totalt 25,3 MWh värme återvinnas men det bästa scenariot med ökad avloppstemperatur och avloppsflöde kunde närmare 47,2 MWh återvinnas, nästan det dubbla från referensvärdet. För att sammanfatta ger modellens simulationer rimliga värden för värmeväxlaren. Det bör därför vara fullt möjligt att använda modellen för att bedöma ett hus rimlighet till en värmeväxlarinstallation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Staats, Wayne Lawrence. "Active heat transfer enhancement in integrated fan heat sinks". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78179.

Texto completo
Resumen
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 205-211).
Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by some estimates. Unfortunately, current cooling technologies often focus on improving heat transfer at the expense of efficiency. The present work focuses on a unique, compact, and efficient air cooled heat sink which addresses these shortcomings. While conventional air cooled heat sinks typically use a separate fan to force air flow over heated fins, the new design incorporates centrifugal fans directly into the body of a loop heat pipe with multiple planar condensers. These "integrated fans" rotate between the planar condensers, in close proximity to the hot surfaces, establishing a radially outward flow of cooling air. The proximity of the rotating impellers to the condenser surfaces results in a marked enhancement in the convective heat transfer coefficient without a large increase in input power. To develop an understanding of the heat transfer in integrated fan heat sinks, a series of experiments was performed to simultaneously characterize the fan performance and average heat transfer coefficients. These characterizations were performed for 15 different impeller profiles with various impeller-to-gap thickness ratios. The local heat transfer coefficient was also measured using a new heated-thin-film infrared thermography technique capable of applying various thermal boundary conditions. The heat transfer was found to be a function of the flow and rotational Reynolds numbers, and the results suggest that turbulent flow structures introduced by the fans govern the transport of thermal energy in the air. The insensitivity of the heat transfer to the impeller profile decouples the fan design from the convection enhancement problem, greatly simplifying the heat sink design process. Based on the experimental results, heat transfer and fan performance correlations were developed (most notably, a two-parameter correlation that predicts the dimensionless heat transfer coefficients across 98% of the experimental work to within 20% relative RMS error). Finally, models were developed to describe the scaling of the heat transfer and mechanical power consumption in multi-fan heat sinks. These models were assessed against experimental results from two prototypes, and suggest that future integrated fan heat sink designs can achieve a 4x reduction in thermal resistance and 3x increase in coefficient of performance compared to current state-of-the-art air cooled heat sinks.
by Wayne L. Staats, Jr.
Ph.D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Meyer, Meyer. "Development of a range of air-to-air heat pipe heat recovery heat exchangers". Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16389.

Texto completo
Resumen
Thesis (MScIng)--University of Stellenbosch, 2004.
ENGLISH ABSTRACT: As the demand for less expensive energy is increasing world-wide, energy conservation is becoming a more-and-more important economic consideration. In light of this, means to recover energy from waste fluid streams is also becoming more-and-more important. An efficient and cost effective means of conserving energy is to recover heat from a low temperature waste fluid stream and use this heat to preheat another process stream. Heat pipe heat exchangers (HPHEs) are devices capable of cost effectively salvaging wasted energy in this way. HPHEs are liquid-coupled indirect transfer type heat exchangers except that the HPHE employs heat pipes or thermosyphons as the major heat transfer mechanism from the high temperature to the low-temperature fluid. The primary advantage of using a HPHE is that it does not require an external pump to circulate the coupling fluid. The hot and cold streams can also be completely isolated preventing cross-contamination of the fluids. In addition, the HPHE has no moving parts. In this thesis, the development of a range of air-to-air HPHEs is investigated. Such an investigation involved the theoretical modelling of HPHEs such that a demonstration unit could be designed, installed in a practical industrial application and then evaluated by considering various financial aspects such as initial costs, running costs and energy savings. To develop the HPHE theoretical model, inside heat transfer coefficients for the evaporator and condenser sections of thermosyphons were investigated with R134a and Butane as two separate working fluids. The experiments on the thermosyphons were undertaken at vertical and at an inclination angle of 45° to the horizontal. Different diameters were considered and evaporator to condenser length ratios kept constant. The results showed that R134a provided for larger heat transfer rates than the Butane operated thermosyphons for similar temperature differences despite the fact that the latent heat of vaporization for Butane is higher than that of R134a. As an example, a R134a charged thermosyphon yielded heat transfer rates in the region of 1160 W whilst the same thermosyphon charged with Butane yielded heat transfer rates in the region of 730 W at 23 °C . Results also showed that higher heat transfer rates were possible when the thermosyphons operated at 45°. Typically, for a thermosyphon with a diameter of 31.9 mm and an evaporator to condenser length ratio of 0.24, an increase in the heat transfer rate of 24 % could be achieved. Theoretical inside heat transfer coefficients were also formulated which were found to correlate reasonably well with most proposed correlations. However, an understanding of the detailed two-phase flow and heat transfer behaviour of the working fluid inside thermosyphons is difficult to model. Correlations proposing this behaviour were formulated and include the use of R134a and Butane as the working fluids. The correlations were formulated from thermosyphons of diameters of 14.99 mm, 17.272 mm, 22.225 mm and 31.9 mm. The evaporator to condenser length ratio for the 31.9 mm diameter thermosyphon was 0.24 whilst the other thermosyphons had ratios of 1. The heat fluxes ranged from 1800-43500 W/m2. The following theoretical inside heat transfer coefficients were proposed for vertical and inclined operations (READ CORRECT FORMULA IN FULL TEXT ABSTRACT) φ = 90° ei h = 3.4516x105Ja−0.855Ku1.344 φ = 45° ei h = 1.4796x105Ja−0.993Ku1.3 φ = 90° l l l ci l l v h x k g 1/ 3 2.05 2 4.61561 109Re 0.364 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ φ = 45° l l l ci l l v h x k g 1/ 3 1.916 2 3.7233 10 5Re 0.136 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ The theoretically modelled demonstration HPHE was installed into an existing air drier system. Heat recoveries of approximately 8.8 kW could be recovered for the hot waste stream with a hot air mass flow rate of 0.55 kg/s at an inlet temperature of 51.64 °C and outlet temperature of 35.9 °C in an environment of 20 °C. Based on this recovery, energy savings of 32.18 % could be achieved and a payback period for the HPHE was calculated in the region of 3.3 years. It is recommended that not withstanding the accuracies of roughly 25 % achieved by the theoretically predicted correlations to that of the experimental work, performance parameters such as the liquid fill charge ratios, the evaporator to condenser length ratios and the orientation angles should be further investigated.
AFRIKAANSE OPSOMMING: As gevolg van die groeiende aanvraag na goedkoper energie, word die behoud van energie ‘n al hoe belangriker ekonomiese oorweging. Dus word die maniere om energie te herwin van afval-vloeierstrome al hoe meer intensief ondersoek. Een effektiewe manier om energie te herwin, is om die lae-temperatuur-afval-vloeierstroom (wat sou verlore gaan) se hitte te gebruik om ‘n ander vloeierstroom mee te verhit. Hier dien dit dan as voorverhitting van die ander, kouer, vloeierstroom. Hittepyp hitteruilers (HPHR’s) is laekoste toestelle wat gebruik kan word vir hierdie doel. ‘n HPHR is ‘n vloeistof-gekoppelde indirekte-oordrag hitteruiler, behalwe vir die feit dat dié hitteruiler gebruik maak van hittepype (of hittebuise) wat die grootste deel van sy hitteoordragsmeganisme uitmaak. Die primêre voordele van ‘n HPHR is dat dit geen bewegende dele het nie, die koue- en warmstrome totaal geïsoleer bly van mekaar en geen eksterne pomp benodig word om die werkvloeier mee te sirkuleer nie. In hierdie tesis word ‘n ondersoek gedoen oor die ontwikkeling van ‘n bestek van lug-totlug HPHR’s. Hierdie ondersoek het die teoretiese modellering van so ‘n HPHR geverg, sodat ‘n demonstrasie eenheid ontwerp kon word. Hierdie demonstrasie eenheid is geïnstalleer in ‘n praktiese industriële toepassing waar dit geïvalueer is deur na aspekte soos finansiële voordele en energie-besparings te kyk. Om die teoretiese HPHR model te kon ontwikkel, moes daar gekyk word na die binnehitteoordragskoëffisiënte van die verdamper- en kondensordeursneë, asook R134a en Butaan as onderskeie werksvloeiers. Die eksperimente met die hittebuise is gedoen in die vertikale en 45° (gemeet vanaf die horisontaal) posisies. Verskillende diameters is ook ondersoek, maar met die verdamper- en kondensor-lengteverhouding wat konstant gehou is. Die resultate wys dat R134a as werksvloeier in die hittebuise voorsiening maak vir groter hitteoordragstempo’s in vergelyking met Butaan as werksvloeier by min of meer dieselfde temperatuur verskil – dít ten spyte van die feit dat Butaan ‘n hoër latente-hittetydens- verdampings eienskap het. As voorbeeld gee ‘n R134a-gelaaide hittebuis ‘n hitteoordragstempo van omtrent 1160 W terwyl dieselfde hittebuis wat met Butaan gelaai is, slegs ongeveer 730 W lewer by 23 °C. Die resultate wys ook duidelik dat hoër hitteoordragstempo’s verkry word indien die hittebuis bedryf word teen ‘n hoek van 45°. ‘n Tipiese toename in hitteoordragstempo is ongeveer 24 % vir ‘n hittebuis met ‘n diameter van 31.9 mm en ‘n verdamper- tot kondensor-lengteverhouding van 0.24. Teoretiese binne-hitteoordragskoëffisiënte is ook geformuleer. Dié waardes stem redelik goed ooreen met die meeste voorgestelde korrelasies. Nieteenstaande die feit dat gedetailleerde twee-fase-vloei en die hitteoordragsgedrag van die werksvloeier binne hittebuise nog nie goed deur die wetenskaplike wêreld verstaan word nie. Korrelasies wat hierdie gedrag voorstel is geformuleer en sluit weereens die gebruik van R134a en Butaan as werksvloeiers in. Die korrelasies is geformuleer vanaf hittebuise met diameters van onderskeidelik 14.99 mm, 17.272 mm, 22.225 mm en 31.9 mm. Die verdamper- tot kondensor-lengteverhoudings vir die 31.9 mm deursnit hittebuis was 0.24 terwyl die ander hittebuise ‘n verhouding van 1 gehad het. Die hitte-vloede het gewissel van 1800-45300 W/m2. Die volgende teoretiese geformuleerde binne-hitteoordragskoëffisiënte word voorgestel vir beide vertikale sowel as nie-vertikale toepassing (LEES KORREKTE FORMULE IN VOLTEKS OPSOMMING) φ = 90° ei h = 3.4516x105Ja−0.855Ku1.344 φ = 45° ei h = 1.4796x105Ja−0.993Ku1.3 φ = 90° l l l ci l l v h x k g 1/ 3 2.05 2 4.61561 109Re 0.364 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ φ = 45° l l l ci l l v h x k g 1/ 3 1.916 2 3.7233 10 5Re 0.136 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ Die wiskundig-gemodelleerde demostrasie HPHR is geïnstalleer binne ‘n bestaande lugdroër-sisteem. Drywing van om en by 8.8 kW kon herwin word vanaf die warm-afvalvloeierstroom met ‘n massa vloei van 0.55 kg/s teen ‘n inlaattemperatuur van 51.64 °C en ‘n uitlaattemperatuur van 35.9 °C binne ‘n omgewing van 20 °C. Na aanleiding van hierdie herwinning, kan energiebesparings van tot 32.18 % verkry word. Die HPHR se installasiekoste kan binne ‘n berekende tydperk van ongeveer 3.3 jaar gedelg word deur hierdie besparing. Verdamper- tot kondensator-lengteverhouding, vloeistofvulverhouding en die oriëntasiehoek vereis verdere ondersoek, aangesien daar slegs ‘n akkuraatheid van 25 % verkry is tussen teoretiese voorspellings en praktiese metings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Phillips, Bren Andrew. "Nano-engineering the boiling surface for optimal heat transfer rate and critical heat flux". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/76536.

Texto completo
Resumen
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 130-133).
The effects on pool boiling characteristics such as critical heat flux and the heat transfer coefficient of different surface characteristics such as surface wettability, roughness, morphology, and porosity are not well understood. Layer-by-layer nanoparticle coatings were used to modify the surface of a sapphire heater to control the surface roughness, the layer thickness, and the surface chemistry. The surface was then tested in a water boiling test at atmospheric pressure while imaging the surface with high speed infrared thermography yielding a 2D time dependent temperature profile. The critical heat flux and heat transfer coefficient were enhanced by over 100% by optimizing the surface parameters. It was found that particle size of the nanoparticles in coating, the coating thickness, and the wettability of the surface have a large impact on CHF and the heat transfer coefficient. Surfaces were also patterned with hydrophobic "islands" within a hydrophilic "sea" by coupling the Layer-by-layer nanoparticle coatings with an ultraviolet ozone technique that patterned the wettability of the surface. The patterning was an attempt to increase the nucleation site density with hydrophobic dots while still maintaining a large hydrophilic region to allow for rewetting of the surface during the ebullition cycle and thus maintaining a high critical heat flux. The patterned surfaces exhibited similar critical heat fluxes and heat transfer coefficients to the surfaces that were only modified with layer-by-layer nanoparticle coatings. However, the patterned surfaces also exhibited highly preferential nucleation from the hydrophobic regions demonstrating an ability to control the nucleation site layout of a surface and opening an avenue for further study.
by Bren Andrew Phillips.
S.M.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sivanantharaja, G. (Geethanchali). "Effect of surface roughness on heat transfer in heat exchanger". Bachelor's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201712143310.

Texto completo
Resumen
The heat exchanger is a device that transfers heat from one fluid to another or between fluid and the environment. Over the last few decades, the role of heat exchangers has increased in the process of heat recovery and introduction of new energy sources. Surface roughness of heat exchanger wall plays a vital role in the efficiency of heat transfer. Therefore, significance of surface roughness is examined by many researchers applying different shapes of roughness. Roughness is the variation in the height of a surface. It could be either a part of the geometry or due to deposition of undesired materials (which decreases the thermal function of the heat exchanger, increases the pressure drop and could cause corrosion). Dimensionless heat transfer correlations such as Nusselt number provides a clear view about the effect of heat transfer by surface roughness. This thesis combines different Nusselt correlations for distinct shapes of surface roughness and investigates the suitability of them on a test experiment by comparing the values gotten. From this investigation it was clear that the value of Nunner correlation delivers the most reasonable results for a fouled layer formed by means of crystallization. Also the Nusselt correlation by Saini et al. could be more suitable for artificial surface roughness than for a fouled surface
Lämmönvaihdin on laite, joka siirtää lämpöä fluidista toiseen tai fluidin ja ympäristön välillä. Viimeisimpien vuosikymmenten aikana lämmönvaihtimien rooli on kasvanut lämmön talteenottoprosesseissa ja uusien energialähteiden käyttöönotossa. Lämmönvaihtimien pinnankarheudella, jolla tarkoitetaan seinämän pintakuvion korkeuden muutosta verrattuna tasaiseen pintaan, on merkittävä rooli lämmönvaihtimen tehokkuudessa. Pinnankarheuden vaikutusta lämmönsiirtoon onkin tarkasteltu useissa tutkimuksissa. Pinnankarheus voi olla osa lämmönvaihdinrakennetta tai johtua ei haluttujen materiaalien kerrostumisesta pinnalle. Tällöin puhutaan likaantumisesta, joka heikentää lämmönvaihtimen lämmönsiirtoa, lisää painehäviötä ja voi aiheuttaa korroosiota. Dimensiottomat korrelaatiot, kuten Nusseltin luku antavat tietoa pinnankarheuden aiheuttamasta vaikutuksen lämmönsiirtoon. Tässä kandidaatintyössä on tarkasteltu kirjallisuudessa esitettyjä Nusseltin luvun korrelaatioita ja niiden soveltuvuutta eri pinnankarheuden muotoihin sekä tutkittu niiden soveltuvuutta todellisen lämmönvaihtimen tapauksessa. Tästä tutkimuksessa tarkastelluista korrelaatioista Nunnerin korrelaatio soveltui parhaiten likaantuneen lämmönvaihtimen lämmönsiirron tarkasteluun. Sainin ym. korrelaatio arvioitiin soveltuvan paremmin keinotekoisen pinnankarheuden kuin likaantuneen pinnan lämmönsiirron tarkasteluun
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Behbahani, Reza M. "Heat transfer and heat transfer fouling in phosphoric acid evaporators". Thesis, University of Surrey, 2003. http://epubs.surrey.ac.uk/842710/.

Texto completo
Resumen
The primary problem in concentrating phosphoric acid is due to fouling on the tube-side of the heat exchangers of the evaporators. Scaling on the heat transfer surfaces occurs because of high supersaturation of phosphoric acid liquor with respect to calcium sulfate. A review of the existing literature reveals that no information is available on heat transfer and on crystallisation fouling of phosphoric acid solutions. Solubility of calcium sulfate is very important with regards to the scaling problems in phosphoric acid concentration plants. Hence, the solubility of different calcium sulfate types in phosphoric acid solution was studied and their dependency on acid concentration and temperature were investigated. A large number of measurements of heat transfer coefficient for water and phosphoric acid solutions under forced convective, subcooled flow boiling and pool boiling conditions at different temperatures, flow velocities, heat fluxes and concentrations were performed. The results show that the modified Gnielinski and Petukhov and Popov con-elations fit the experimental results for forced convective heat transfer to phosphoric acid solutions better than the other correlations. The Chen model and associated correlations were found suitable for the prediction of subcooled flow boiling heat transfer coefficients for phosphoric acid solutions. Applying the actual temperature driving force (Tw-Ti) instead of (Tw-Tb), a theoretical model was proposed, which permits the prediction of pool boiling heat transfer coefficients of phosphoric acid solutions with good accuracy. A large number of fouling experiments were carried out at different flow velocities, surface temperatures and concentrations to determine the mechanisms, which control deposition process. After clarification of the effect of operational parameters on the deposition process, a mathematical model was developed for prediction of fouling resistance. The activation energy evaluated for the surface reaction of the deposit formation was found to be 56,829 J/mol. The predicted fouling resistances were compared with the experimental data. Quantitative and qualitative agreement for measured and predicted fouling rates, is good. Also, a kinetic model for crystallization fouling was developed, using the field data. The predictions of the suggested model are in good agreement with the plant operating data. Finally, a numerical model was developed for computer simulation of shell and tube heat exchangers. The agreement between the field data and the prediction of the model was very satisfactory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Holzaepfel, Gregory M. "Convective Heat Transfer in Parallel Plate Heat Sinks". Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1292521397.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Gari, Abdullatif Abdulhadi. "Analysis of conjugate heat transfer in tube-in-block heat exchangers for some engineering applications". [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001716.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Botos, Peter A. (Peter Alex). "The heat pipe injection lance /". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=56782.

Texto completo
Resumen
The work performed can be divided into three stages. The first stage involved the development and study of a transparent heat pipe which served to illustrate the principles of heat pipes, specifically, thermosyphons or wickless heat pipes. The second stage dealt with the conception, construction and study of a laboratory scale heat pipe injection lance. The knowledge gained in the laboratory was used to build two pilot scale heat pipe injection lances, Mark I and Mark II, in the third stage of this work. These lances were tested in the copper converting furnace at the Kidd Creek smelter. Through the development of pilot scale heat pipe injection lances, it is shown that a self-cooled heat pipe lance has a furnace life orders of magnitude greater than a conventional stainless steel lance, with its exact location relative to the molten copper bath surface known.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Heat engineering"

1

Janna, William S. Engineering heat transfer. Boston, Mass: PWS Engineering, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Janna, William S. Engineering heat transfer. 3a ed. Boca Raton: CRC Press, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Janna, William S. Engineering heat transfer. 2a ed. Boca Raton, Fla: CRC Press, 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Janna, William S. Engineering heat transfer. Boston: Van Nostrand Reinhold International, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Rathore, M. M. Engineering heat transfer. 2a ed. Sudbury, Mass: Jones & Bartlett Learning, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Suryanarayana, N. V. Engineering heat transfer. Minneapolis/St. Paul: West Pub. Co., 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Suryanarayana, N. V. Engineering heat transfer. Minneapolis/St. Paul: West Pub. Co, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Annaratone, Donatello. Engineering Heat Transfer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03932-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Simonson, J. R. Engineering Heat Transfer. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-19351-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Foumeny, E. A. Heat exchange engineering. New York: Ellis Horwood, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Heat engineering"

1

Bolton, William. "Heat". En Engineering Science, 141–60. Seventh edition. | Abingdon, Oxon; New York, NY: Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.1201/9781003093596-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Brenn, Günter. "Heat Transfer". En Mathematical Engineering, 189–237. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-51423-8_8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Field, Robert W. "Heat Transfer". En Chemical Engineering, 62–90. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09840-8_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dash, Sanjaya K., Pitam Chandra y Abhijit Kar. "Heat Exchange". En Food Engineering, 241–64. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003285076-19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zudin, Yuri B. "Variable Heat Transfer Coefficient (Heat Conduction Problem)". En Mathematical Engineering, 335–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25167-2_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lakshminarayanan, P. A. y Yogesh V. Aghav. "Heat Transfer". En Mechanical Engineering Series, 79–82. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3885-2_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Holdsworth, S. Donald y Ricardo Simpson. "Heat Transfer". En Food Engineering Series, 17–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24904-9_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lakshminarayanan, P. A. y Yogesh V. Aghav. "Heat Transfer". En Mechanical Engineering Series, 95–100. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6742-8_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Simonson, J. R. "Heat exchangers". En Engineering Heat Transfer, 176–207. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-19351-6_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Almenas, K. y R. Lee. "Core Heat Removal". En Nuclear Engineering, 433–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48876-4_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Heat engineering"

1

Takamatsu, Hiroshi y Kosaku Kurata. "Engineering Approach to Irreversible Electroporation". En The 15th International Heat Transfer Conference. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ihtc15.kn.000005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gridchin, Victor A., Vladimir M. Lubibsky y Oleg V. Lobach. "Microelectronic transducers for heat-power engineering". En 2007 International Forum on Strategic Technology. IEEE, 2007. http://dx.doi.org/10.1109/ifost.2007.4798518.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lobach, Roman V., Oleg V. Lobach y Regina P. Dikareva. "Microelectronic transducer for heat-power engineering". En 2008 9th International Workshop and Tutorials on Electron Devices and Materials. IEEE, 2008. http://dx.doi.org/10.1109/sibedm.2008.4585871.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

"Section X Heat and power engineering". En 2008 International Conference - Modern Technique and Technologies. IEEE, 2008. http://dx.doi.org/10.1109/spcmtt.2008.4897518.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Vilemas, Jurgis. "THERMOPHYSICS, THERMAL ENGINEERING IN LITHUANIA AND ACADEMICIAN ALGIRDAS ZUKAUSKAS". En Advances in Heat Transfer Engineering. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/bht4.10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

McCullough, Charles R., Scott M. Thompson y Heejin Cho. "Heat Recovery With Oscillating Heat Pipes". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66241.

Texto completo
Resumen
Waste-heat recovery applied in HVAC air systems is of interest to increase the energy efficiency of residential, commercial and industrial buildings. In this study, the feasibility of using tubular-shaped oscillating heat pipes (OHPs), which are two-phase heat transfer devices with ultra-high thermal conductivity, for heat exchange between counter-flowing air streams (i.e., outdoor and exhaust air flows) was investigated. For a prescribed volumetric flow rate of air and duct geometry, four different OHP Heat Exchangers (OHP-HEs) were sized via the ε-NTU method for the task of sub-cooling intake air 5.5 °C (10 °F). The OHP-HE tubes were assumed to have a static thermal conductivity of 50,000 W/m·K and only operate upon a minimum temperature difference in order to simulate their inherent heat transport capability and start-up behavior. Using acetone as the working fluid, it was found that for a maximum temperature difference of 7°C or more, the OHP-HE can operate and provide for an effectiveness of 0.36. Pressure drop analysis indicates the presented OHP-HE design configurations provide for a minimum of 5 kPa. The current work provides a necessary step for quantifying and designing the OHP for waste heat recovery in AC systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Drost, Kevin. "Mesoscopic Heat-Actuated Heat Pump Development". En ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0803.

Texto completo
Resumen
Abstract Battelle, Pacific Northwest Division (Battelle) and Pacific Northwest National Laboratory1 (PNNL) are developing a miniature absorption heat pump. Targeted applications include microclimate control ranging from manportable cooling to distributed space conditioning. The miniature absorption heat pump will be sized to provide 350 Wt of cooling2. A complete manportable cooling system, which will include the microscale heat pump, an air-cooled heat exchanger, batteries, and fuel, is estimated to weigh between 4 and 5 kg. For comparison, alternative systems weigh about 10 kg. Size and weight reductions in the microscale heat pump are possible because the device can take advantage of the high heat and mass transfer rates attainable in microscale structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Agonafer, Damena, Juan Ibarra, Kendrick McGee, Frank Platt, Kendall Harris y Dereje Aganofer. "Heat Pipe Optimization Team: The Heat Pipe Assisted Heat Sink Project". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62480.

Texto completo
Resumen
The Heat Pipe Assisted Heat Sink (HPAHS) team will be working on solving challenging thermal management problems for a device known as the base transceiver station (BTS); a device used to transfer cell phone calls. This problem was raised due to transfer cell phone calls. This problem was raised due to the high use of cell phone in recent years. According to 2002 Scarborough Research, the number of cell phones in US was 180 million (2/3 of population). Due to this high increase in demand for cell phone usage, Replacement Handset Shipments are projected to increase worldwide from Current 40% of total shipments to almost 85%. This will increase from 211 million in 2002 to 591 million by 2008 (Nokia). Cell phone calls are transferred via a device known as the base transceiver station (BTS). Cell phone companies are increasing the performance of the BTS by adding more electronics. Nokia is increasing the current BTS performance by adding another power amplifier. We will encounter the problem of designing the thermal solution to ensure optimal thermal performance, while meeting customer requirements of cost and manufacturing process.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Vasiliev, Leonard L. "APPLICATION OF HEAT PIPES IN MODERN HEAT EXCHANGERS". En Advances in Heat Transfer Engineering. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/bht4.100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Little, W. A., J. G. Weisend, John Barclay, Susan Breon, Jonathan Demko, Michael DiPirro, J. Patrick Kelley et al. "HEAT TRANSFER EFFICIENCY OF KLEEMENKO CYCLE HEAT EXCHANGERS". En ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908605.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Heat engineering"

1

Kruger, P. Heat Extraction Project, geothermal reservoir engineering research at Stanford. Office of Scientific and Technical Information (OSTI), enero de 1989. http://dx.doi.org/10.2172/5247981.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Capell, B. M., M. G. Houts, D. I. Poston y M. Berte. Engineering design aspects of the heat-pipe power system. Office of Scientific and Technical Information (OSTI), octubre de 1997. http://dx.doi.org/10.2172/663582.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Krajewski, R. F. Oil Heat Vent Analysis Program (OHVAP) users manual and engineering report. Office of Scientific and Technical Information (OSTI), noviembre de 1996. http://dx.doi.org/10.2172/420406.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hendricks, Terry y William T. Choate. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery. Office of Scientific and Technical Information (OSTI), noviembre de 2006. http://dx.doi.org/10.2172/1218711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wahiduzzaman, S. y T. Morel. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Office of Scientific and Technical Information (OSTI), abril de 1992. http://dx.doi.org/10.2172/7267573.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Altseimer, J. H. y F. J. Edeskuty. A survey of geothermal process heat applications in Guatemala: An engineering survey. Office of Scientific and Technical Information (OSTI), agosto de 1988. http://dx.doi.org/10.2172/6833051.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ori, Naomi y Jason W. Reed. Engineering parthenocarpic fruit production in tomato. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2021. http://dx.doi.org/10.32747/2021.8134175.bard.

Texto completo
Resumen
Normally, fruits are formed only following fertilization. In tomato, fertilization is sensitive to extreme temperatures, resulting in reduced yield. Yield stability would therefore benefit from tomato varieties with parthenocarpic fruits, which develop independently of fertilization. The objective of the research was to generate parthenocarpic tomato lines by mutating PRC2 components, to investigate how PRC2 and auxin signaling regulate fruit initiation and growth, and to generate parthenocarpic lines for breeding. We reasoned that heterozygous prc2 mutations would generate parthenocarpic fruits with minimal vegetative effects, as they act in the female gametophyte. The specific objectives were : To generate (1) tomato PRC2 mutants and characterize them developmentally (2) and molecularly (3), and to test their performance in the field (4). Aim 1 proved challenging, and was achieved only during the third year. Therefore the research was extended for an additional 8 months, during which goals 2 and 4 were achieved. The research yielded mutations in 4 different PRC2 components, two of which were loss-of-function mutations that produced parthenocarpic fruits, Slfie and Slmsi1 mutants. Characterization of heterozygote Slfie mutants showed that they produce fruits independently of fertilization across a range of growth conditions. No homozygote Slfie mutants were obtained, likely due to failure of the mutant allele to transfer via the female gametopyte. Slfie/+ fruits were of good quality in contrast to most previously described parthenocarpic fruits. Initial characterization under heat stress showed a dramatic increase in yield under extreme heat, therefore providing yield stability. In addition, we characterized single and double mutants in tomato SlARF8a and SlARF8b, and found that these also gave plants with parthenocarpic fruit growth and increased yield stability. The research yielded genetic material that can be used in breeding programs to increase yield stability under unstable climate
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Carter, Michael L., Geojoe Kuruvila, Yuk Woo, Kei Y. Lau y Kevin G. Bowcutt. Hypersonic Engineering Aerothermodynamic Trajectory Tool Kit (HEAT-TK). Delivery Order 0009: Software User's Manual. Fort Belvoir, VA: Defense Technical Information Center, enero de 2005. http://dx.doi.org/10.21236/ada455794.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wahiduzzaman, S. y T. Morel. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report. Office of Scientific and Technical Information (OSTI), abril de 1992. http://dx.doi.org/10.2172/10175396.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Wahiduzzaman, S. y T. Morel. Effect of translucence of engineering ceramics on heat transfer in diesel engines: Final report. Office of Scientific and Technical Information (OSTI), octubre de 1987. http://dx.doi.org/10.2172/5712724.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía