Libros sobre el tema "Harmonic Fourier Series coefficient"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 24 mejores mejores libros para su investigación sobre el tema "Harmonic Fourier Series coefficient".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Petrovich, Khavin Viktor y Nikolʹskiĭ N. K, eds. Commutative harmonic analysis IV: Harmonic analysis in IRn̳. Berlin: Springer-Verlag, 1992.
Buscar texto completoElwood, Byerly William. An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in mathematical physics. Mineola, N.Y: Dover Publications, 2003.
Buscar texto completoR, Wade W. y Simon P. 1949-, eds. Walsh series: An introduction to dyadic harmonic analysis. Budapest: Akadémiai Kiadó, 1990.
Buscar texto completoSchipp, F. Walsh series: An introduction to dyadic harmonic analysis. Bristol [England]: Adam Hilger, 1990.
Buscar texto completoD'Angelo, John P. Hermitian analysis: From Fourier series to Cauchy-Riemann geometry. New York: Birkhauser/Springer, 2013.
Buscar texto completoWard, Brown James, ed. Fourier series and boundary value problems. 4a ed. New York: McGraw-Hill, 1987.
Buscar texto completoAlgebraic topology. Providence, R.I: American Mathematical Society, 1986.
Buscar texto completo1968-, Arvesú Jorge y Lopez Lagomasino Guillermo 1948-, eds. Recent advances in orthogonal polynomials, special functions, and their applications: 11th International Symposium on Orthogonal Polynomials, Special Functions, and Their Applications, August 29-September 2, 2011, Universidad Carlos III de Madrid, Leganes, Spain. Providence, R.I: American Mathematical Society, 2012.
Buscar texto completoHarmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society, 2017.
Buscar texto completoStroud, K. A. Fourier Series and Harmonic Analysis. Hyperion Books, 1986.
Buscar texto completoYoung, Robert M. Introduction to Non-Harmonic Fourier Series, Revised Edition, 93. Elsevier Science & Technology Books, 2001.
Buscar texto completo(Editor), Izabella Aba y Carol Shubin (Editor), eds. Lectures on Harmonic Analysis (University Lecture Series). American Mathematical Society, 2003.
Buscar texto completoAshurov, R. R., V. P. Khavin, J. Peetre, Sh A. Alimov y N. K. Nikol'skii. Commutative Harmonic Analysis IV: Harmonic Analysis in IRn. Springer, 2013.
Buscar texto completoKhavin, V. P. y N. K. Nikol'skij. Commutative Harmonic Analysis I: General Survey. Classical Aspects. Springer, 2010.
Buscar texto completoKhavinson, D., E. M. Dyn'kin, S. V. Kislyakov y V. P. Khavin. Commutative Harmonic Analysis I: General Survey. Classical Aspects. Springer, 2013.
Buscar texto completoKhavin, V. P. Commutative Harmonic Analysis I: General Survey Classical Aspects (Encyclopaedia of Mathematical Sciences). Springer, 1991.
Buscar texto completoAn Elementary Treatise on Fourier's Series and Spherical, Cylindrical, and Ellipsoidal Harmonics: With Applications to Problems in Mathematical Physics. Adamant Media Corporation, 2005.
Buscar texto completoByerly, William Elwood. Elementary Treatise on Fourier's Series, an: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical. Dover Publications, Incorporated, 2014.
Buscar texto completo(Editor), N. K. Nikolskii, ed. Commutative Harmonic Analysis IV: Harmonic Analysis in Ir (Encyclopaedia of Mathematical Sciences). Springer, 1992.
Buscar texto completoMarcus, Michael B. y Gilles Pisier. Random Fourier Series with Applications to Harmonic Analysis. (AM-101), Volume 101. Princeton University Press, 2016.
Buscar texto completoD'Angelo, John P. Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry. Springer International Publishing AG, 2020.
Buscar texto completoD'Angelo, John P. Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry. Birkhauser Verlag, 2013.
Buscar texto completoD'Angelo, John P. Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry. Birkhäuser, 2016.
Buscar texto completoD'Angelo, John P. Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry. Birkhäuser, 2019.
Buscar texto completo