Literatura académica sobre el tema "Hamiltonians"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hamiltonians".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hamiltonians"
Hiroshima, Fumio. "Weak Coupling Limit with a Removal of an Ultraviolet Cutoff for a Hamiltonian of Particles Interacting with a Massive Scalar Field". Infinite Dimensional Analysis, Quantum Probability and Related Topics 01, n.º 03 (julio de 1998): 407–23. http://dx.doi.org/10.1142/s0219025798000211.
Texto completoPannell, William H. "The intersection between dual potential and sl(2) algebraic spectral problems". International Journal of Modern Physics A 35, n.º 32 (20 de noviembre de 2020): 2050208. http://dx.doi.org/10.1142/s0217751x20502085.
Texto completoHastings, Matthew. "Trivial low energy states for commuting Hamiltonians, and the quantum PCP conjecture". Quantum Information and Computation 13, n.º 5&6 (mayo de 2013): 393–429. http://dx.doi.org/10.26421/qic13.5-6-3.
Texto completoLiu, Yu, Jin Liu y Da-jun Zhang. "On New Hamiltonian Structures of Two Integrable Couplings". Symmetry 14, n.º 11 (27 de octubre de 2022): 2259. http://dx.doi.org/10.3390/sym14112259.
Texto completoOrlov, Yu N., V. Zh Sakbaev y O. G. Smolyanov. "Randomizes hamiltonian mechanics". Доклады Академии наук 486, n.º 6 (28 de junio de 2019): 653–58. http://dx.doi.org/10.31857/s0869-56524866653-658.
Texto completoWu, Xin, Ying Wang, Wei Sun, Fu-Yao Liu y Wen-Biao Han. "Explicit Symplectic Methods in Black Hole Spacetimes". Astrophysical Journal 940, n.º 2 (1 de diciembre de 2022): 166. http://dx.doi.org/10.3847/1538-4357/ac9c5d.
Texto completoLiu, Yingkai y Emil Prodan. "A computer code for topological quantum spin systems over triangulated surfaces". International Journal of Modern Physics C 31, n.º 07 (26 de junio de 2020): 2050091. http://dx.doi.org/10.1142/s0129183120500916.
Texto completoKonig, R. "Simplifying quantum double Hamiltonians using perturbative gadgets". Quantum Information and Computation 10, n.º 3&4 (marzo de 2010): 292–334. http://dx.doi.org/10.26421/qic10.3-4-9.
Texto completoChilds, A. M. y R. Kothari. "Limitations on the simulation of non-sparse Hamiltonians". Quantum Information and Computation 10, n.º 7&8 (julio de 2010): 669–84. http://dx.doi.org/10.26421/qic10.7-8-7.
Texto completoSYLJUÅSEN, OLAV F. "RANDOM WALKS NEAR ROKHSAR–KIVELSON POINTS". International Journal of Modern Physics B 19, n.º 12 (10 de mayo de 2005): 1973–93. http://dx.doi.org/10.1142/s021797920502964x.
Texto completoTesis sobre el tema "Hamiltonians"
ABENDA, SIMONETTA. "Analysis of Singularity Structures for Quasi-Integrable Hamiltonian Systems". Doctoral thesis, SISSA, 1994. http://hdl.handle.net/20.500.11767/4499.
Texto completoNagaj, Daniel. "Local Hamiltonians in quantum computation". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45162.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 169-176).
In this thesis, I investigate aspects of local Hamiltonians in quantum computing. First, I focus on the Adiabatic Quantum Computing model, based on evolution with a time- dependent Hamiltonian. I show that to succeed using AQC, the Hamiltonian involved must have local structure, which leads to a result about eigenvalue gaps from information theory. I also improve results about simulating quantum circuits with AQC. Second, I look at classically simulating time evolution with local Hamiltonians and finding their ground state properties. I give a numerical method for finding the ground state of translationally invariant Hamiltonians on an infinite tree. This method is based on imaginary time evolution within the Matrix Product State ansatz, and uses a new method for bringing the state back to the ansatz after each imaginary time step. I then use it to investigate the phase transition in the transverse field Ising model on the Bethe lattice. Third, I focus on locally constrained quantum problems Local Hamiltonian and Quantum Satisfiability and prove several new results about their complexity. Finally, I define a Hamiltonian Quantum Cellular Automaton, a continuous-time model of computation which doesn't require control during the computation process, only preparation of product initial states. I construct two of these, showing that time evolution with a simple, local, translationally invariant and time-independent Hamiltonian can be used to simulate quantum circuits.
by Daniel Nagaj.
Ph.D.
Assis, Paulo. "Non-Hermitian Hamiltonians in field theory". Thesis, City University London, 2009. http://openaccess.city.ac.uk/2118/.
Texto completoRamaswami, Geetha Pillaiyarkulam. "Numerical solution of special separable Hamiltonians". Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627541.
Texto completoMoore, David Jeffrey. "Non-adiabatic Berry phases for periodic Hamiltonians". Thesis, University of Canterbury. Physics, 1991. http://hdl.handle.net/10092/8072.
Texto completoYildirim, Yolcu Selma. "Eigenvalue inequalities for relativistic Hamiltonians and fractional Laplacian". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31649.
Texto completoCommittee Chair: Harrell, Evans; Committee Member: Chow, Shui-Nee; Committee Member: Geronimo, Jeffrey; Committee Member: Kennedy, Brian; Committee Member: Loss, Michael. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bartlett, Bruce. "Flow equations for hamiltonians from continuous unitary transformations". Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53428.
Texto completoENGLISH ABSTRACT: This thesis presents an overview of the flow equations recently introduced by Wegner. The little known mathematical framework is established in the initial chapter and used as a background for the entire presentation. The application of flow equations to the Foldy-Wouthuysen transformation and to the elimination of the electron-phonon coupling in a solid is reviewed. Recent flow equations approaches to the Lipkin model are examined thoroughly, paying special attention to their utility near the phase change boundary. We present more robust schemes by requiring that expectation values be flow dependent; either through a variational or self-consistent calculation. The similarity renormalization group equations recently developed by Glazek and Wilson are also reviewed. Their relationship to Wegner's flow equations is investigated through the aid of an instructive model.
AFRIKAANSE OPSOMMING: Hierdie tesis bied 'n oorsig van die vloeivergelykings soos dit onlangs deur Wegner voorgestel is. Die betreklik onbekende wiskundige raamwerk word in die eerste hoofstuk geskets en deurgans as agtergrond gebruik. 'n Oorsig word gegee van die aanwending van die vloeivergelyking vir die Foldy-Wouthuysen transformasie en die eliminering van die elektron-fonon wisselwerking in 'n vastestof. Onlangse benaderings tot die Lipkin model, deur middel van vloeivergelykings, word ook deeglik ondersoek. Besondere aandag word gegee aan hul aanwending naby fasegrense. 'n Meer stewige skema word voorgestel deur te vereis dat verwagtingswaardes vloei-afhanklik is; óf deur gevarieerde óf self-konsistente berekenings. 'n Inleiding tot die gelyksoortigheids renormerings groep vergelykings, soos onlangs ontwikkel deur Glazek en Wilson, word ook aangebied. Hulle verwantskap met die Wegner vloeivergelykings word bespreek aan die hand van 'n instruktiewe voorbeeld.
Duffus, Stephen N. A. "Open quantum systems, effective Hamiltonians and device characterisation". Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/33672.
Texto completoHyder, Asif M. "Green's operator for Hamiltonians with Coulomb plus polynomial potentials". California State University, Long Beach, 2013.
Buscar texto completoEngeler, Marco Bruno Raphael. "New model Hamiltonians for improved orbital basis set convergence". Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/54563/.
Texto completoLibros sobre el tema "Hamiltonians"
Greiter, Martin. Mapping of Parent Hamiltonians. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24384-4.
Texto completoMargaret, Houghton, ed. The Hamiltonians: [100 fascinating lives]. Toronto: J. Lorimer, 2003.
Buscar texto completoBenguria, Rafael, Eduardo Friedman y Marius Mantoiu, eds. Spectral Analysis of Quantum Hamiltonians. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0414-1.
Texto completoHafner, Jürgen. From Hamiltonians to Phase Diagrams. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83058-7.
Texto completoWachsmuth, Jakob. Effective Hamiltonians for constrained quantum systems. Providence, Rhode Island: American Mathematical Society, 2013.
Buscar texto completoMinlos, R., ed. Many-Particle Hamiltonians: Spectra and Scattering. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/advsov/005.
Texto completoBagarello, Fabio, Roberto Passante y Camillo Trapani, eds. Non-Hermitian Hamiltonians in Quantum Physics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31356-6.
Texto completoEduardo, Friedman, Mantoiu Marius y SpringerLink (Online service), eds. Spectral Analysis of Quantum Hamiltonians: Spectral Days 2010. Basel: Springer Basel, 2012.
Buscar texto completoNeagu, Mircea y Alexandru Oană. Dual Jet Geometrization for Time-Dependent Hamiltonians and Applications. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08885-8.
Texto completoMichel, Herman, ed. Global and accurate vibration Hamiltonians from high resolution molecular spectroscopy. New York: Wiley, 1999.
Buscar texto completoCapítulos de libros sobre el tema "Hamiltonians"
Agrachev, Andrei A. y Yuri L. Sachkov. "Hamiltonian Systems with Convex Hamiltonians". En Control Theory from the Geometric Viewpoint, 207–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06404-7_14.
Texto completoBaaquie, Belal Ehsan. "Hamiltonians". En Mathematical Methods and Quantum Mathematics for Economics and Finance, 321–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6611-0_14.
Texto completoShell, Karl. "Hamiltonians". En The New Palgrave Dictionary of Economics, 1–4. London: Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1057/978-1-349-95121-5_1166-1.
Texto completoShell, Karl. "Hamiltonians". En The New Palgrave Dictionary of Economics, 1–4. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_1166-2.
Texto completoShell, Karl. "Hamiltonians". En The New Palgrave Dictionary of Economics, 5605–9. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_1166.
Texto completoExner, Pavel. "Pseudo-Hamiltonians". En Open Quantum Systems and Feynman Integrals, 146–212. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5207-2_4.
Texto completoRaduta, Apolodor Aristotel. "Boson Hamiltonians". En Nuclear Structure with Coherent States, 363–406. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14642-3_13.
Texto completoGuelachvili, G. "Effective hamiltonians". En Linear Triatomic Molecules, 2–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/10837166_2.
Texto completoKimmich, Rainer. "Spin Hamiltonians". En NMR, 418–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60582-6_46.
Texto completoMüller, Peter y Peter Stollmann. "Percolation Hamiltonians". En Random Walks, Boundaries and Spectra, 235–58. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0346-0244-0_13.
Texto completoActas de conferencias sobre el tema "Hamiltonians"
Butcher, Eric A. y S. C. Sinha. "On the Analysis of Time-Periodic Nonlinear Hamiltonian Dynamical Systems". En ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0277.
Texto completoSaue, Trond. "Relativistic Hamiltonians for chemistry". En INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771717.
Texto completoPrivman, Vladimir, Dima V. Mozyrsky y Steven P. Hotaling. "Hamiltonians for quantum computing". En AeroSense '97, editado por Steven P. Hotaling y Andrew R. Pirich. SPIE, 1997. http://dx.doi.org/10.1117/12.277664.
Texto completoLévai, G. "On solvable Bohr Hamiltonians". En NUCLEAR PHYSICS, LARGE AND SMALL: International Conference on Microscopic Studies of Collective Phenomena. AIP, 2004. http://dx.doi.org/10.1063/1.1805947.
Texto completoBENDER, CARL M. "COMPLEX HAMILTONIANS HAVING REAL SPECTRA". En Proceedings of the Second International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777850_0002.
Texto completoAlexanian, G. "On the renormalization of Hamiltonians". En Montreal-Rochester-Syracuse-Toronto (MRST) conference on high energy physics. AIP, 2000. http://dx.doi.org/10.1063/1.1328913.
Texto completoSheinfux, Hanan Herzig, Stella Schindler, Yaakov Lumer y Mordechai Segev. "Recasting Hamiltonians with gauged-driving". En CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.fth1d.5.
Texto completoHilbert, Astrid. "Degenerate Diffusions with regular Hamiltonians". En FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874570.
Texto completoCostello, J. B., S. D. O’Hara, Q. Wu, L. N. Pfeiffer, K. W. West y M. S. Sherwin. "Experimental Hamiltonian Reconstruction via Polarimetry of High-order Sidebands in a Semiconductor". En CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu5b.3.
Texto completoYoshida, Sota, Michio Kohno, Takashi Abe, Takaharu Otsuka, Naofumi Tsunoda y Noritaka Shimizu. "Shell-Model Hamiltonians from Chiral Forces". En Proceedings of the Ito International Research Center Symposium "Perspectives of the Physics of Nuclear Structure". Journal of the Physical Society of Japan, 2018. http://dx.doi.org/10.7566/jpscp.23.013014.
Texto completoInformes sobre el tema "Hamiltonians"
Symon, K. R. Derivation of Hamiltonians for accelerators. Office of Scientific and Technical Information (OSTI), septiembre de 1997. http://dx.doi.org/10.2172/555549.
Texto completo. Trifonov, Dimitar A. Diagonalization of Hamiltonians, Uncertainty Matrices and Robertson Inequality. GIQ, 2012. http://dx.doi.org/10.7546/giq-2-2001-294-312.
Texto completoBoozer, A. H. Transformation of Hamiltonians to near action-angle form. Office of Scientific and Technical Information (OSTI), abril de 1985. http://dx.doi.org/10.2172/5760929.
Texto completoNebgen, Benjamin, Justin Smith, Sergei Tretiak y Nicholas Lubbers. Closeout Report: Machine Learned Effective Hamiltonians for Molecular Properties. Office of Scientific and Technical Information (OSTI), febrero de 2021. http://dx.doi.org/10.2172/1768446.
Texto completoIsichenko, M. B., W. Horton, D. E. Kim, E. G. Heo y D. I. Choi. Stochastic diffusion and Kolmogorov entropy in regular and random Hamiltonians. Office of Scientific and Technical Information (OSTI), mayo de 1992. http://dx.doi.org/10.2172/7205669.
Texto completoIsichenko, M. B., W. Horton, D. E. Kim, E. G. Heo y D. I. Choi. Stochastic diffusion and Kolmogorov entropy in regular and random Hamiltonians. Office of Scientific and Technical Information (OSTI), mayo de 1992. http://dx.doi.org/10.2172/10156433.
Texto completoSomma, Rolando Diego. Hamiltonian Simulation. Office of Scientific and Technical Information (OSTI), mayo de 2020. http://dx.doi.org/10.2172/1618318.
Texto completoBoozer, A. H. Magnetic field line Hamiltonian. Office of Scientific and Technical Information (OSTI), febrero de 1985. http://dx.doi.org/10.2172/5915503.
Texto completoRitchie, B. Electron-Vector Potential Interaction Hamiltonian. Office of Scientific and Technical Information (OSTI), marzo de 2003. http://dx.doi.org/10.2172/15003914.
Texto completoMalitsky, N., G. Bourianoff y Yu Severgin. Some remarks about pseudo-Hamiltonian. Office of Scientific and Technical Information (OSTI), noviembre de 1993. http://dx.doi.org/10.2172/10194905.
Texto completo