Literatura académica sobre el tema "Hamiltonian equivalence"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Hamiltonian equivalence".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Hamiltonian equivalence"
Qian, Jing, Yun Zeng, Li Xiang Zhang y Tian Mao Xu. "Analysis on Equivalence between Transfer Function and Equivalent Circuit Simulation in General Hamiltonian Modeling". Applied Mechanics and Materials 204-208 (octubre de 2012): 4896–99. http://dx.doi.org/10.4028/www.scientific.net/amm.204-208.4896.
Texto completoNikitin, A. G. y V. V. Tretynyk. "Parasupersymmetries and Non-Lie Constants of Motion for Two-Particle Equations". International Journal of Modern Physics A 12, n.º 24 (30 de septiembre de 1997): 4369–86. http://dx.doi.org/10.1142/s0217751x97002371.
Texto completoDERIGLAZOV, A. A., W. OLIVEIRA y G. OLIVEIRA-NETO. "EQUIVALENCE BETWEEN DIFFERENT CLASSICAL TREATMENTS OF THE O(N) NONLINEAR SIGMA MODEL AND THEIR FUNCTIONAL SCHRÖDINGER EQUATIONS". International Journal of Modern Physics A 18, n.º 05 (20 de febrero de 2003): 755–66. http://dx.doi.org/10.1142/s0217751x03013867.
Texto completoBalajany, Hamideh y Mohammad Mehrafarin. "Geometric phase of cosmological scalar and tensor perturbations in f(R) gravity". Modern Physics Letters A 33, n.º 14 (10 de mayo de 2018): 1850077. http://dx.doi.org/10.1142/s0217732318500773.
Texto completoM, Nandakumar y K. S. Subrahamanian Moosath. "Rough Liouville Equivalence of Integrable Hamiltonian Systems". Advances in Dynamical Systems and Applications 15, n.º 2 (22 de diciembre de 2020): 153–69. http://dx.doi.org/10.37622/adsa/15.2.2020.153-169.
Texto completoNirov, Kh S. y A. V. Razumov. "Equivalence between Lagrangian and Hamiltonian BRST formalisms". Journal of Mathematical Physics 34, n.º 9 (septiembre de 1993): 3933–53. http://dx.doi.org/10.1063/1.530410.
Texto completoMartynchuk, N. N. "Semi-local Liouville equivalence of complex Hamiltonian systems defined by rational Hamiltonian". Topology and its Applications 191 (agosto de 2015): 119–30. http://dx.doi.org/10.1016/j.topol.2015.05.090.
Texto completoAMICO, LUIGI. "ALGEBRAIC EQUIVALENCE BETWEEN CERTAIN MODELS FOR SUPERFLUID–INSULATOR TRANSITION". Modern Physics Letters B 14, n.º 21 (10 de septiembre de 2000): 759–66. http://dx.doi.org/10.1142/s0217984900000963.
Texto completoCheng, Daizhan, Alessandro Astolfi y Romeo Ortega. "On feedback equivalence to port controlled Hamiltonian systems". Systems & Control Letters 54, n.º 9 (septiembre de 2005): 911–17. http://dx.doi.org/10.1016/j.sysconle.2005.02.005.
Texto completoSalat, A. "Hamiltonian Approach to Magnetic Fields with Toroidal Surfaces". Zeitschrift für Naturforschung A 40, n.º 10 (1 de octubre de 1985): 959–67. http://dx.doi.org/10.1515/zna-1985-1001.
Texto completoTesis sobre el tema "Hamiltonian equivalence"
Bergougnoux, Benjamin. "Matrix decompositions and algorithmic applications to (hyper)graphs". Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC025/document.
Texto completoIn the last decades, considerable efforts have been spent to characterize what makes NP-hard problems tractable. A successful approach in this line of research is the theory of parameterized complexity introduced by Downey and Fellows in the nineties.In this framework, the complexity of a problem is not measured only in terms of the input size, but also in terms of a parameter on the input.One of the most well-studied parameters is tree-width, a graph parameter which measures how close a graph is to the topological structure of a tree.It appears that tree-width has numerous structural properties and algorithmic applications.However, only sparse graph classes can have bounded tree-width.But, many NP-hard problems are tractable on dense graph classes.Most of the time, this tractability can be explained by the ability of these graphs to be recursively decomposable along vertex bipartitions $(A,B)$ where the adjacency between $A$ and $B$ is simple to describe.A lot of graph parameters -- called width measures -- have been defined to characterize this ability, the most remarkable ones are certainly clique-width, rank-width, and mim-width.In this thesis, we study the algorithmic properties of these width measures.We provide a framework that generalizes and simplifies the tools developed for tree-width and for problems with a constraint of acyclicity or connectivity such as Connected Vertex Cover, Connected Dominating Set, Feedback Vertex Set, etc.For all these problems, we obtain $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$ and $n^{O(k)}$ time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and mim-width.We also prove that there exists an algorithm solving Hamiltonian Cycle in time $n^{O(k)}$, when a clique-width decomposition of width $k$ is given.Finally, we prove that we can count in polynomial time the minimal transversals of $\beta$-acyclic hypergraphs and the minimal dominating sets of strongly chordal graphs.All these results offer promising perspectives towards a generalization of width measures and their algorithmic applications
Seewald, Nadiane Cristina Cassol [UNESP]. "Método do hamiltoniano termodinamicamente equivalente para sistemas de muitos corpos". Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/102540.
Texto completoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo da Tese é investigar a aplicabilidade e propor extensões do método do hamiltoniano termodinamicamente equivalente (MHTE) para sistemas de muitos corpos descritos por uma teoria de campos. Historicamente, o MHTE tem sua origem na teoria quântica de muitos corpos para descrever o fenômeno da supercondutividade. O método consiste na observação de que o hamiltoniano de um sistema pode ser diagonalizado exatamente através de uma transformação unitária quando um número finito de momentos transferidos que contribuem para a interação é levado em conta no limite termodinâmico. Essa transformação unitária depende explicitamente de funções de gap que podem ser determinadas através do método variacional de Gibbs. Na presente Tese, extensões do método são feitas visando aplicações em sistemas de muitos corpos em diferentes situações, tais como: transições de fase estáaticas, evolução temporal de parâmetros de ordem descrita por equações dinâmicas estocásticas do tipo Ginzburg-Landau-Langevin (GLL), teorias quânticas de campos escalares relativísticos e teorias de muitos corpos para sistemas fermiônicos não relativísticos. Mostra-se, em particular, que o MHTE é um esquema de aproximação sistemático e controlável que permite incorporar acoplamentos de componentes de Fourier de parâmetros de ordem além do modo zero, da mesma forma que em teorias quânticas relativísticas ou não relativísticas ele incorpora correlações não perturbativas entre as partículas além daquelas levadas em conta pelas tradicionais aproximações de campo médio. Métodos são desenvolvidos para obtermos soluções numéricas explícitas com o objetivo de avaliar a aplicabilidade do MHTE em alguns casos específicos. Particular atenção é dedicada ao controle de divergências de Rayleigh-Jeans nas simulações numéricas de equações de GLL
The general objective of the Thesis is to apply the Method of the Thermodynamically Equivalent Hamiltonian (MTEH) to many-body systems described by a field theory. Historically, the MTEH has its origins in the quantum theory of manybody systems to describe the phenomenon of superconductivity. The method is based on the observation that the Hamiltonian of the system can be diagonalized exactly with a unitary transformation when a finite number of transfer momenta of the interaction are taken into account in the thermodynamic limit. This unitary transformation depends explicitly on gap functions that can be determined with the use of the Gibbs variational principle. In the present Thesis, extensions of the method are made envisaging applications in many-body systems in different situations, like: static phase transitions, time evolution of order parameters described by dynamic stochastic Ginzburg-Landau-Langevin equations, relativistic quantum scalar field theories, and many-body theories for nonrelativistic fermionic systems. It is shown that the MTEH is a systematic and controllable approximation scheme that in the theory of phase transitions allows to incorporate Fourier modes of the order parameter beyond the zero mode, in the same way that in the relativistic and nonrelativistic theories it incorporates particle nonperturbative correlations beyond those taken into account by the traditional mean field approximation. Methods are developed to obtain explicit numerical solutions with the aim to assess the applicability of the MTEH in specific situations. Particular attention is devoted to the control of Rayleigh-Jeans ultraviolet divergences in the numerical simulations of Ginzburg-Landau-Langevin equations
Seewald, Nadiane Cristina Cassol. "Método do hamiltoniano termodinamicamente equivalente para sistemas de muitos corpos /". São Paulo, 2012. http://hdl.handle.net/11449/102540.
Texto completoBanca: Marcus Benghi Pinto
Banca: Ney Lemke
Banca: Sandra dos Santos Padula
Banca: Yogiro Hama
Resumo: O objetivo da Tese é investigar a aplicabilidade e propor extensões do método do hamiltoniano termodinamicamente equivalente (MHTE) para sistemas de muitos corpos descritos por uma teoria de campos. Historicamente, o MHTE tem sua origem na teoria quântica de muitos corpos para descrever o fenômeno da supercondutividade. O método consiste na observação de que o hamiltoniano de um sistema pode ser diagonalizado exatamente através de uma transformação unitária quando um número finito de momentos transferidos que contribuem para a interação é levado em conta no limite termodinâmico. Essa transformação unitária depende explicitamente de funções de gap que podem ser determinadas através do método variacional de Gibbs. Na presente Tese, extensões do método são feitas visando aplicações em sistemas de muitos corpos em diferentes situações, tais como: transições de fase estáaticas, evolução temporal de parâmetros de ordem descrita por equações dinâmicas estocásticas do tipo Ginzburg-Landau-Langevin (GLL), teorias quânticas de campos escalares relativísticos e teorias de muitos corpos para sistemas fermiônicos não relativísticos. Mostra-se, em particular, que o MHTE é um esquema de aproximação sistemático e controlável que permite incorporar acoplamentos de componentes de Fourier de parâmetros de ordem além do modo zero, da mesma forma que em teorias quânticas relativísticas ou não relativísticas ele incorpora correlações não perturbativas entre as partículas além daquelas levadas em conta pelas tradicionais aproximações de campo médio. Métodos são desenvolvidos para obtermos soluções numéricas explícitas com o objetivo de avaliar a aplicabilidade do MHTE em alguns casos específicos. Particular atenção é dedicada ao controle de divergências de Rayleigh-Jeans nas simulações numéricas de equações de GLL
Abstract: The general objective of the Thesis is to apply the Method of the Thermodynamically Equivalent Hamiltonian (MTEH) to many-body systems described by a field theory. Historically, the MTEH has its origins in the quantum theory of manybody systems to describe the phenomenon of superconductivity. The method is based on the observation that the Hamiltonian of the system can be diagonalized exactly with a unitary transformation when a finite number of transfer momenta of the interaction are taken into account in the thermodynamic limit. This unitary transformation depends explicitly on gap functions that can be determined with the use of the Gibbs variational principle. In the present Thesis, extensions of the method are made envisaging applications in many-body systems in different situations, like: static phase transitions, time evolution of order parameters described by dynamic stochastic Ginzburg-Landau-Langevin equations, relativistic quantum scalar field theories, and many-body theories for nonrelativistic fermionic systems. It is shown that the MTEH is a systematic and controllable approximation scheme that in the theory of phase transitions allows to incorporate Fourier modes of the order parameter beyond the zero mode, in the same way that in the relativistic and nonrelativistic theories it incorporates particle nonperturbative correlations beyond those taken into account by the traditional mean field approximation. Methods are developed to obtain explicit numerical solutions with the aim to assess the applicability of the MTEH in specific situations. Particular attention is devoted to the control of Rayleigh-Jeans ultraviolet divergences in the numerical simulations of Ginzburg-Landau-Langevin equations
Doutor
Veglia, Luca. "Multisymplectic formalism for theories of super-fields and non-equivalent symplectic structures on the covariant phase space". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC303/document.
Texto completoThe Calculus of Variations and its geometric interpretation always played a key role in Mathematical Physics, either through the Lagrangian formalism, or through the Hamiltonian equations.The multisymplectic formalism allows a finite dimensional geometric description of classical field theories seen from an Hamiltonian point of view. Multisymplectic geometry plays the same role played by symplectic geometry in the description of classical Hamiltonian mechanics. Moreover the multisymplectic approach provides a tool for building a symplectic structure on the space of solutions of the field theory and for investigating it.In this thesis I use the multisymplectic formalism to build first order field theories and I hope to give two main original contributions:– I show that, in some situations, the symplectic structure on the covariant phase space may indeed depend from the choice of splitting of spacetime in space and time;– I extend the multisymplectic formalism to superfield theories.As a "byproduct", I present another contribution:– I define fractional forms on supermanifolds with their relative Cartan Calculus. These fractional forms are useful to build the multisymplectic formalism for superfield theories.The main ingredients of the formalism I use are: the finite dimensional multimomenta phase space P and its extension to super field theories, which I give; the Lagrangian superform; the super-Hamiltonian, the multisymplectic superform.In my thesis I also prove a Comparison Theorem which allows to clarify the relations existing between the so called components theories and the so called superfield theories. I explain how the supermultisymplectic formalism can be used to define super Poisson brackets for super fields. I give a "super" version of the first Noether theorem valid for the action of supergroups of symmetry and I propose a “super” extension of the multimomentum map.Finally I present some examples showing how all the theory can be implemented: I study the free superparticle and the 3-dimensional sigma-model
Cochran, Caroline. "THE EQUIVALENCE PROBLEM FOR ORTHOGONALLY SEPARABLE WEBS ON SPACES OF CONSTANT CURVATURE". 2011. http://hdl.handle.net/10222/14191.
Texto completoTORTORELLA, ALFONSO GIUSEPPE. "Deformations of coisotropic submanifolds in Jacobi manifolds". Doctoral thesis, 2017. http://hdl.handle.net/2158/1077777.
Texto completoLibros sobre el tema "Hamiltonian equivalence"
Mercati, Flavio. Hamiltonian Formulation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789475.003.0006.
Texto completoMercati, Flavio. York’s Solution to the Initial-Value Problem. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789475.003.0008.
Texto completoZeitlin, Vladimir. Rotating Shallow-Water model with Horizontal Density and/or Temperature Gradients. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0014.
Texto completoHoring, Norman J. Morgenstern. Q. M. Pictures; Heisenberg Equation; Linear Response; Superoperators and Non-Markovian Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0003.
Texto completoCapítulos de libros sobre el tema "Hamiltonian equivalence"
"Maupertuis Principle and Geodesic Equivalence". En Integrable Hamiltonian Systems. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426.ch15.
Texto completo"Maupertuis Principle and Geodesic Equivalence". En Integrable Hamiltonian Systems, 663–702. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426-19.
Texto completo"Liouville Equivalence of Integrable Systems with Two Degrees of Freedom". En Integrable Hamiltonian Systems. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426.ch4.
Texto completo"Rough Liouville Equivalence of Integrable Systems with Two Degrees of Freedom". En Integrable Hamiltonian Systems. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426.ch3.
Texto completo"Rough Liouville Equivalence of Integrable Systems with Two Degrees of Freedom". En Integrable Hamiltonian Systems, 145–74. CRC Press, 2004. http://dx.doi.org/10.1201/9780203643426-7.
Texto completoVadim, Kaloshin y Zhang Ke. "Forcing equivalence between kissing cylinders". En Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom, 133–44. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.003.0012.
Texto completoIliopoulos, J. y T. N. Tomaras. "Elements of Classical Field Theory". En Elementary Particle Physics, 24–34. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192844200.003.0003.
Texto completoVadim, Kaloshin y Zhang Ke. "Perturbative weak KAM theory". En Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom, 66–76. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.003.0007.
Texto completoVadim, Kaloshin y Zhang Ke. "Weak KAM Theory and Forcing Equivalence". En Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom, 55–65. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202525.003.0006.
Texto completoCina, Jeffrey A. "Short-pulse electronic absorption". En Getting Started on Time-Resolved Molecular Spectroscopy, 1–10. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780199590315.003.0001.
Texto completoActas de conferencias sobre el tema "Hamiltonian equivalence"
Hudon, N., K. Hoffner y M. Guay. "Equivalence to dissipative Hamiltonian realization". En 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739446.
Texto completoStojanović, S. D., M. V. Pavkov-Hrvojević y M. J. Škrinjar. "The Equivalence of Transfer Matrix Method and Boson Hamiltonian Approach Calculations in Ferromagnetic Superlattices". En SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733399.
Texto completoBae, D. S. y Y. S. Won. "A Hamiltonian Equation of Motion for Realtime Vehicle Simulation". En ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0062.
Texto completoTian, Liguang y H. J. Carmichael. "Broadband excitation of the Jaynes–Cummings molecule". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.ws3.
Texto completoPetrzela, Jiri. "Equivalent circuit realizations of fourth-order chaotic Hamiltonian system". En 2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE, 2016. http://dx.doi.org/10.1109/radioelek.2016.7477353.
Texto completoButcher, Eric A. y S. C. Sinha. "Canonical Perturbation of a Fast Time-Periodic Hamiltonian via Liapunov-Floquet Transformation". En ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4107.
Texto completoJannson, Tomasz y Joel Ng. "Nonimaging optics and the Liouville theorem in the XUV region". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thpo24.
Texto completoRobinett, Rush D. y David G. Wilson. "Decentralized Exergy/Entropy Thermodynamic Control for Collective Robotic Systems". En ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43691.
Texto completoGroner, Peter. "THE INTRIGUING Fbc(PbPc+PcPb) TERM IN THE INTERACTION HAMILTONIAN FOR TUNNELING BETWEEN EQUIVALENT GAUCHE CONFORMERS". En 2022 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2022. http://dx.doi.org/10.15278/isms.2022.tf01.
Texto completoOrth, K., G. Grad y J. Friedrich. "Nuclear spin conversion relaxation processes in dimethyl-s-tetrazine doped n-octane measured by spectral hole burning techniques". En Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/shbl.1992.wa5.
Texto completo